Skip to main content

Advertisement

Log in

The human saliva metabolome

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Saliva is a clear, watery biofluid produced by the salivary glands to protect and lubricate the oral cavity. While mostly composed of water (99 %), the chemical composition of saliva is known to change quite dramatically in response to a variety of different physiological states, stimuli, insults and stressors. Unfortunately, among the human biofluids typically used in medical testing (such as blood and urine), saliva is rarely used. Given that saliva is the most easily accessible and readily obtained biofluid, this is rather unfortunate. Part of the reluctance to use saliva in medical testing likely has to do with the fact that its chemical composition is not well known. Here, a comprehensive characterization of the human saliva metabolome is presented. Multiple analytical platforms including nuclear magnetic resonance spectroscopy, gas chromatography mass spectrometry, direct flow injection/liquid chromatography mass spectrometry, inductively coupled plasma mass spectrometry, and high performance liquid chromatography were employed to quantify the metabolites that can be commonly detected in human saliva. Using this multiplatform approach, we were able to quantify and/or identify 308 salivary metabolites or metabolite species in human saliva. This experimental work was complemented with computer-aided literature mining that led to the identification and annotation of another 708 salivary metabolites. The combined collection of 853 non-redundant salivary metabolites or metabolite species together with their concentrations, related literature references, and links to their known disease associations are freely available at http://www.hmdb.ca/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez-Sánchez, B., Priego-Capote, F., & Luque de Castro, M. D. (2012). Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. Journal of Chromatography A, 1248, 178–181.

    Article  PubMed  Google Scholar 

  • Arakeri, G., Patil, S. G., Ramesh, D. N., Hunasgi, S., & Brennan, P. A. (2013). Evaluation of the possible role of copper ions in drinking water in the pathogenesis of oral submucous fibrosis: A pilot study. British Journal of Oral and Maxillofacial Surgery,. doi:10.1016/j.bjoms.2013.01.010.

    Google Scholar 

  • Barbosa, F, Jr, Corrêa Rodrigues, M., Buzalaf, M., Krug, F., Gerlach, R., & Tanus-Santos, J. (2006). Evaluation of the use of salivary lead levels as a surrogate of blood lead or plasma lead levels in lead exposed subjects. Archives of Toxicology, 80(10), 633–637. doi:10.1007/s00204-006-0096-y.

    Article  CAS  PubMed  Google Scholar 

  • Bouatra, S., Aziat, F., Mandal, R., et al. (2013). The human urine metabolome. PLoS ONE, 8(9), e73076. doi:10.1371/journal.pone.0073076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burt, B. A. (2006). The use of sorbitol- and xylitol-sweetened chewing gum in caries control. Journal of the American Dental Association, 137(2), 190–196.

    Article  PubMed  Google Scholar 

  • Cámpora, P., Bermejo, A. M., Tabernero, M. J., & Fernández, P. (2003). Quantitation of cocaine and its major metabolites in human saliva using gas chromatography-positive chemical ionization-mass spectrometry (GC-PCI-MS). Journal of Analytical Toxicology, 27(5), 270–274.

    Article  PubMed  Google Scholar 

  • Capote, F. P., Jimenez, J. R., Granados, J. M. M., & de Castro, M. D. L. (2007). Identificaion and determination of fat-soluble vitamins and metabolites in human serum by liquid chromatoghraphy/triple quadrupole mass spectrometry with multiple reaction monitoring. Rapid Communications in Mass Spectrometry, 21, 1745–1754.

    Article  CAS  Google Scholar 

  • Cerutti, P. A., & Trump, B. F. (1991). Inflammation and oxidative stress in carcinogenesis. Cancer Cells, 3, 1–7.

    CAS  PubMed  Google Scholar 

  • Chatzimichalakis, P. F., Samanidou, V. F., Verpoorte, R., & Papadoyannis, I. N. (2004). Development of a validated HPLC method for the determination of B-complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. Journal of Separation Science, 27, 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  • Chiappin, S., Antonelli, G., Gatti, R., & De Palo, E. F. (2007). Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clinica Chimica Acta, 383(1–2), 30–40. doi:10.1016/j.cca.2007.04.011.

    Article  CAS  Google Scholar 

  • Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48(4), 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Cross, S. E., Kreth, J., Wali, R. P., Sullivan, R., Shi, W., & Gimzewski, J. K. (2009). Evaluation of bacteria-induced enamel demineralization using optical profilometry. Dental Materials, 25(12), 1517–1526. doi:10.1016/j.dental.2009.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C., & Brown, S. A. (2012). The human circadian metabolome. Proceedings of the National Academy of Sciences, 109(7), 2625–2629. doi:10.1073/pnas.1114410109.

    Article  CAS  Google Scholar 

  • de Almeida Pdel, V., Gregio, A. M., Machado, M. A., de Lima, A. A., & Azevedo, L. R. (2008). Saliva composition and functions: A comprehensive review. The Journal of Contemporary Dental Practice, 9(3), 72–80.

    PubMed  Google Scholar 

  • Denny, P., Hagen, F. K, Hardt, M., et al. (2008). The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. Journal of Proteome Research, 7(5), 1994–2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distler, W., & Kroncke, A. (1981). The lactate metabolism of the oral bacterium Veillonella from human saliva. Archives of Oral Biology, 26(8), 657–661.

    Article  CAS  PubMed  Google Scholar 

  • Fidalgo, T. K. S., Freitas-Fernandes, L. B., Angeli, R., et al. (2013). Salivary metabolite signatures of children with and without dental caries lesions. Metabolomics, 9(3), 657–666.

    Article  CAS  Google Scholar 

  • Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher, & L. Raschid (Eds.), Data integration in the life sciences (Vol. 3615, pp. 224–239). Lecture notes in computer science. Berlin: Springer.

  • Fischer, D., & Ship, J. A. (1999). Effect of age on variability of parotid salivary gland flow rates over time. Age and Ageing, 28(6), 557–561.

    Article  CAS  PubMed  Google Scholar 

  • Fiskerstrand, T., Refsum, H., Kvalheim, G., & Ueland, P. M. (1993). Homocysteine and other thiols in plasma and urine: Automated determination and sample stability. Clinical Chemistry, 39(2), 263–271.

    CAS  PubMed  Google Scholar 

  • Goldberg, S., Kozlovsky, A., Gordon, D., Gelernter, I., Sintov, A., & Rosenberg, M. (1994). Cadaverine as a putative component of oral malodor. Journal of Dental Research, 73(6), 1168–1172.

    Article  CAS  PubMed  Google Scholar 

  • Guinan, T., Ronci, M., Kobus, H., & Voelcker, N. H. (2012). Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta, 99, 791–798. doi:10.1016/j.talanta.2012.07.029.

    Article  CAS  PubMed  Google Scholar 

  • Gwinner, W., & Gröne, H. J. (2000). Role of reactive oxygen species in glomerulonephritis. Nephrology, Dialysis, Transplantation, 15(8), 1127–1132.

    Article  CAS  PubMed  Google Scholar 

  • Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M., et al. (2013). MetaboLights–an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 41(Database issue), D781–D786. doi:10.1093/nar/gks1004.

    Article  CAS  PubMed  Google Scholar 

  • Heitland, P., & Köster, H. D. (2006). Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clinical Chimica Acta, 365(1–2), 310–318.

    Article  CAS  Google Scholar 

  • Hu, G., & Sandham, H. J. (1972). Streptococcal utilization of lactic acid and its effect on pH. Archives of Oral Biology, 17(4), 729–743.

    Article  CAS  PubMed  Google Scholar 

  • Jia, J., Sun, Y., Yang, H., et al. (2012). Effect of human saliva on wound healing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 26(5), 563–566.

    PubMed  Google Scholar 

  • Kamodyova, N., Tothova, L., & Celec, P. (2013). Salivary markers of oxidative stress and antioxidant status: influence of external factors. Disease Markers, 34(5), 313–321. doi:10.3233/dma-130975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman, E., & Lamster, I. B. (2002). The diagnostic applications of saliva—a review. Critical Reviews in Oral Biology & Medicine, 13(2), 197–212.

    Article  Google Scholar 

  • Kim, Y. J., Kim, Y. K., & Kho, H. S. (2010). Effects of smoking on trace metal levels in saliva. Oral Diseases, 16(8), 823–830. doi:10.1111/j.1601-0825.2010.01698.x.

    Article  PubMed  Google Scholar 

  • Kochanska, B., Smolenski, R. T., & Knap, N. (2000). Determination of adenine nucleotides and their metabolites in human saliva. Acta Biochimica Polonica, 47(3), 877–879.

    CAS  PubMed  Google Scholar 

  • Korithoski, B., Krastel, K., & Cvitkovitch, D. G. (2005). Transport and metabolism of citrate by Streptococcus mutans. Journal of Bacteriology, 187(13), 4451–4456. doi:10.1128/jb.187.13.4451-4456.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusmierek, K., & Bald, E. (2008). Measurement of reduced and total mercaptamine in urine using liquid chromatography with ultraviolet detection. Biomedical Chromatography, 22(4), 441–445. doi:10.1002/bmc.959.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, M. J., Jensen, A. F., Madsen, D. M., & Pearce, E. I. (1999). Individual variations of pH, buffer capacity, and concentrations of calcium and phosphate in unstimulated whole saliva. Archives of Oral Biology, 44(2), 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Pagoria, D., Raigrodski, A., et al. (2007). Effects of combinations of ROS scavengers on oxidative DNA damage caused by visible-light-activated camphorquinone/N, N-dimethyl-p-toluidine. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 83(2), 391–399.

    Article  PubMed  Google Scholar 

  • Linke, H. A., Moss, S. J., Arav, L., & Chiu, P. M. (1997). Intra-oral lactic acid production during clearance of different foods containing various carbohydrates. Zeitschrift fur Ernahrungswissenschaft, 36(2), 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes, A. C., Wiegand, A., Rios, D., Buzalaf, M. A., & Lussi, A. (2011). Fluoride in dental erosion. Monographs in Oral Science, 22, 158–170. doi:10.1159/000325167.

    Article  PubMed  Google Scholar 

  • Mandal, R., Guo, A. C., Chaudhary, K. K., et al. (2012). Multi-platform characterization of the human cerebrospinal fluid metabolome: A comprehensive and quantitative update. Genome Medicine, 4(4), 38. doi:10.1186/gm337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcotte, H., & Lavoie, M. C. (1998). Oral microbial ecology and the role of salivary immunoglobulin A. Microbiology and Molecular Biology Reviews, 62(1), 71–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, H. J., Riazanskaia, S., & Thomas, C. L. (2012). Sampling and characterisation of volatile organic compound profiles in human saliva using a polydimethylsiloxane coupon placed within the oral cavity. Analyst, 137(16), 3627–3634. doi:10.1039/c2an35432b.

    Article  CAS  PubMed  Google Scholar 

  • Morenkova, S. A. (2004). Comparative analysis of dependence of saliva sorbitol and fructosamine levels on blood glucose level in patients with diabetes. Biomed Khim, 50(6), 612–614.

    CAS  PubMed  Google Scholar 

  • Morris-Wiman, J., Sego, R., Brinkley, L., & Dolce, C. (2000). The effects of sialoadenectomy and exogenous EGF on taste bud morphology and maintenance. Chemical Senses, 25(1), 9–19. doi:10.1093/chemse/25.1.9.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, Y., Kodama, H., Satoh, T., et al. (2010). Diurnal changes in salivary amino acid concentrations. Vivo, 24(6), 837–842.

    CAS  Google Scholar 

  • Oudhoff, M. J., Bolscher, J. G. M., Nazmi, K., et al. (2008). Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. The FASEB Journal, 22(11), 3805–3812. doi:10.1096/fj.08-112003.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y. D., Jang, J. H., Oh, Y. J., & Kwon, H. J. (2014). Analyses of organic acids and inorganic anions and their relationship in human saliva before and after glucose intake. Archives of Oral Biology, 59(1), 1–11. doi:10.1016/j.archoralbio.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  • Persson, S., Edlund, M. B., Claesson, R., & Carlsson, J. (1990). The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiology and Immunology, 5(4), 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Piermarini, S., Volpe, G., Federico, R., Moscone, D., & Palleschi, G. (2010). Detection of biogenic amines in human saliva using a screen-printed biosensor. Analytical Letters, 43(7–8), 1310–1316. doi:10.1080/00032710903518724.

    Article  CAS  Google Scholar 

  • Pittendrigh, C. S. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55, 16–54. doi:10.1146/annurev.ph.55.030193.000313.

    Article  CAS  PubMed  Google Scholar 

  • Pobozy, E., Czarkowska, W., & Trojanowicz, M. (2006). Determination of amino acids in saliva using capillary electrophoresis with fluorimetric detection. Journal of Biochemical and Biophysical Methods, 67(1), 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Psychogios, N., Hau, D. D., Peng, J., et al. (2011). The human serum metabolome. PLoS ONE, 6(2), e16957. doi:10.1371/journal.pone.0016957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolla, G., Ciardi, J. E., & Bowen, W. H. (1983). Identification of IgA, IgG, lysozyme, albumin, alpha-amylase and glucosyltransferase in the protein layer adsorbed to hydroxyapatite from whole saliva. Scandinavian Journal of Dental Research, 91(3), 186–190.

    CAS  PubMed  Google Scholar 

  • Sanchez-Pablo, M. A., Gonzalez-Garcia, V., & del Castillo-Rueda, A. (2012). Study of total stimulated saliva flow and hyperpigmentation in the oral mucosa of patients diagnosed with hereditary hemochromatosis. Series of 25 cases. Medicina Oral, Patología Oral y Cirugía Bucal, 17(1), e45–e49.

    Article  PubMed  Google Scholar 

  • Shetty, S. R., Babu, S., Kumari, S., Shetty, P., Vijay, R., & Karikal, A. (2012). Evaluation of micronutrient status in serum and saliva of oral submucous fibrosis patients: A clinicopathological study. Indian Journal of Medical and Paediatric Oncology, 33(4), 224–226. doi:10.4103/0971-5851.107087.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silwood, C. J., Lynch, E., Claxson, A. W., & Grootveld, M. C. (2002). 1H and (13)C NMR spectroscopic analysis of human saliva. Journal of Dental Research, 81(6), 422–427.

    Article  CAS  PubMed  Google Scholar 

  • Soini, H. A., Klouckova, I., Wiesler, D., et al. (2010). Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. Journal of Chemical Ecology, 36(9), 1035–1042. doi:10.1007/s10886-010-9846-7.

    Article  CAS  PubMed  Google Scholar 

  • Spielmann, N., & Wong, D. T. (2011). Saliva: diagnostics and therapeutic perspectives. Oral Diseases, 17(4), 345–354.

    Article  Google Scholar 

  • Spinner, D. S., Cho, I. S., Park, S. Y., et al. (2008). Accelerated prion disease pathogenesis in Toll-like receptor 4 signaling-mutant mice. Journal of Virology, 82(21), 10701–10708. doi:10.1128/JVI.00522-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, M., Saruta, J., Matsuki, C., et al. (2013). Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics, 9(2), 454–463. doi:10.1007/s11306-012-0464-y.

    Article  CAS  Google Scholar 

  • Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6(1), 78–95. doi:10.1007/s11306-009-0178-y.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, I., Stretch, C., Barnaby, P., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22(6), 577–584. doi:10.1002/nbm.1369.

    Article  CAS  PubMed  Google Scholar 

  • Toone, R. J., Peacock, O. J., Smith, A. A., et al. (2013). Measurement of steroid hormones in saliva: Effects of sample storage condition. Scandinavian Journal of Clinical and Laboratory Investigation, 73(8), 615–621. doi:10.3109/00365513.2013.835862.

    Article  CAS  PubMed  Google Scholar 

  • Vakkuri, O. (1985). Diurnal rhythm of melatonin in human saliva. Acta Physiologica Scandinavica, 124(3), 409–412. doi:10.1111/j.1748-1716.1985.tb07676.x.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84(3), 531–539.

    CAS  PubMed  Google Scholar 

  • Wang, D., Fan, L., Zhang, L., et al. (2012). Comparison of the total arsenic concentration between saliva and blood after oral administration of sodium arsenite to rats. Wei Sheng Yan Jiu, 41(6), 947–950.

    CAS  PubMed  Google Scholar 

  • Ward, M. E., Politzer, I. R., Laseter, J. L., & Alam, S. Q. (1976). Gas chromatographic mass spectrometric evaluation of free organic acids in human saliva. Biomedical Mass Spectrometry, 3(2), 77–80.

    Article  CAS  PubMed  Google Scholar 

  • Wei, J., Xie, G., Zhou, Z., Shi, P., et al. (2011). Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer, 129(9), 2207–2217.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., et al. (2013). HMDB 3.0–The human metabolome database in 2013. Nucleic Acids Research, 41(Database issue), D801–D807. doi:10.1093/nar/gks1065.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Lewis, M. J., Morrissey, J. A., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography B, 871(2), 164–173. doi:10.1016/j.jchromb.2008.05.001.

    Article  CAS  Google Scholar 

  • Wisner, A., Dufour, E., Messaoudi, M., et al. (2006). Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proceedings of the National Academy of Sciences, 103(47), 17979–17984. doi:10.1073/pnas.0605865103.

    Article  CAS  Google Scholar 

  • Wong, D. T. (2006). Salivary diagnostics powered by nanotechnologies, proteomics and genomics. Journal of the American Dental Association, 137(3), 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Xia, Y., Peng, C., Zhou, Z., et al. (2012). Clinical significance of saliva urea, creatinine, and uric acid levels in patients with chronic kidney disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 37(11), 1171–1176. doi:10.3969/j.issn.1672-7347.2012.11.016.

    CAS  PubMed  Google Scholar 

  • Zappacosta, B., Manni, A., Persichilli, S., et al. (2003). HPLC analysis of some sulphur compounds in saliva: Comparison between healthy subjects and periodontopathic patients. Clinica Chimica Acta, 338(1–2), 57–60.

    Article  CAS  Google Scholar 

  • Zheng, J., Dixon, R. A., & Li, L. (2012). Development of isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment. Analytical Chemistry, 84(24), 10802–10811. doi:10.1021/ac3028307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this research has been provided by Genome Canada, Genome Alberta, The Canadian Institutes of Health Research, Alberta Innovates, The National Research Council and The National Institute of Nanotechnology. The funders had no role in study design, data collection. data analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Wishart.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study complied with all applicable institutional guidelines and terms of the Declaration of Helsinki of 1975 (as revised in 2008) for investigation of human subjects. The research involving human subjects was based on their informed consent. All participants agreed to participate in this study and to contribute saliva samples for metabolomic analysis. All samples were collected in accordance with the ethical guidelines mandated by the University of Alberta as approved by the University’s Health Research Ethics Board.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dame, Z.T., Aziat, F., Mandal, R. et al. The human saliva metabolome. Metabolomics 11, 1864–1883 (2015). https://doi.org/10.1007/s11306-015-0840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0840-5

Keywords

Navigation