Skip to main content
Log in

Serum metabolomics profile of type 2 diabetes mellitus in a Brazilian rural population

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The development of common forms of diabetes comes from the interaction between environmental and genetic factors, and the consequences of poor glycemic control in these patients could result in several complications. Metabolomic studies for type 2 diabetes mellitus in serum/plasma have reported changes in numerous metabolites, which might be considered possible targets for future mechanistic research. However, the specific role of a particular metabolite as cause or consequence of diabetes derangements is difficult to establish.

Objectives

As type 2 diabetes is a disease that changes the metabolic profile in several levels, this work aimed to compare the metabolomic profiles of type 2 diabetes mellitus and non-diabetic participants. In addition, we exploited our family-based study design to bring a better understanding of the causal relationship of identified metabolites and diabetes.

Methods

In the current study, population based metabolomics was applied in 939 subjects from the Baependi Heart Study. Participants were separated into two groups: diabetic (77 individuals) and non-diabetic (862 individuals), and the metabolic profile was performed by GC/MS technique.

Results

We have identified differentially concentrated metabolites in serum of diabetic and non-diabetic individuals. We identified 72 metabolites up-regulated in type 2 diabetes mellitus compared to non-diabetics. It was possible to recapitulate the main pathways that the literature shows as changed in diabetes. Also, based on metabolomic profile, we separated pre-diabetic individuals (with glucose concentration between 100–125 mg/dL) from non-diabetics and diabetics. Finally, using heritability analysis, we were able to suggest metabolites in which altered levels may precede diabetic development.

Conclusion

Our data can be used to derive a better understanding of the causal relationship of the observed associations and help to prioritize diabetes-associated metabolites for further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chevalier, S., Marliss, E. B., Morais, J. A., Lamarche, M., & Gougeon, R. (2005). Whole-body protein anabolic response is resistant to the action of insulin in obese women. The American Journal of Clinical Nutrition, 82(2), 355–365.

    CAS  PubMed  Google Scholar 

  • de Oliveira, C. M., Pereira, A. C., de Andrade, M., Soler, J. M., & Krieger, J. E. (2008). Heritability of cardiovascular risk factors in a Brazilian population: Baependi heart study. BMC Medical Genetics, 9, 32. doi:10.1186/1471-2350-9-32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. application in 1H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290. doi:10.1021/ac051632c.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083. doi:10.1038/nprot.2011.335.

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. The Journal of Nutrition, 135, 1539S–1546S.

    CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Garvey, W. T., Newman, J. W., Lok, K. H., Hoppel, C. L., & Adams, S. H. (2010). Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One, 5(12), e15234. doi:10.1371/journal.pone.0015234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gall, W. E., Beebe, K., Lawton, K. A., Adam, K.-P., Mitchell, M. W., Nakhle, P. J., et al. (2010). Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 5(5), e10883. doi:10.1371/journal.pone.0010883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horimoto, A. R. V. R., Giolo, S. R., Oliveira, C. M., Alvim, R. O., Soler, J. P., de Andrade, M., et al. (2011). Heritability of physical activity traits in Brazilian families: The Baependi Heart Study. BMC Medical Genetics, 12(1), 155. doi:10.1186/1471-2350-12-155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikaelyan, N. P., Nguen, H. Z., & Terent’ev, A. A. (2015). Metabolic abnormalities in erythrocyte membranes and liver tissue homogenates in experimental diabetes mellitus. Bulletin of Experimental Biology and Medicine, 159(2), 197–200. doi:10.1007/s10517-015-2921-x.

    Article  CAS  PubMed  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2013). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326. doi:10.1016/j.cmet.2009.02.002.A.

    Article  Google Scholar 

  • Padberg, I., Peter, E., González-Maldonado, S., Witt, H., Mueller, M., Weis, T., et al. (2014). A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One, 9(1), e85082. doi:10.1371/journal.pone.0085082.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. doi:10.1038/nature11450.

    Article  CAS  PubMed  Google Scholar 

  • Shah, S. H., Crosslin, D. R., Haynes, C. S., Nelson, S., Turer, C. B., Stevens, R. D., et al. (2012). Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia, 55(2), 321–330. doi:10.1007/s00125-011-2356-5.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, A., Chavali, S., Mahajan, A., Tabassum, R., Banerjee, V., Tandon, N., et al. (2005). Genetic association, post-translational modification, and protein-protein interactions in type 2 diabetes mellitus. Molecular & Cellular Proteomics: MCP, 4(8), 1029–1037. doi:10.1074/mcp.M500024-MCP200.

    Article  CAS  Google Scholar 

  • Suhre, K. (2014). Metabolic profiling in diabetes. The Journal of Endocrinology, 221(3), R75–R85. doi:10.1530/JOE-14-0024.

    Article  CAS  PubMed  Google Scholar 

  • Swan, J. W., Anker, S. D., Walton, C., Godsland, I. F., Clark, A. L., Leyva, F., et al. (1997). Insulin resistance in chronic heart failure: Relation to severity and etiology of heart failure. Journal of the American College of Cardiology, 30(2), 527–532. doi:10.1016/S0735-1097(97)00185-X.

    Article  CAS  PubMed  Google Scholar 

  • Trifonova, O., Lokhov, P., & Archakov, A. (2013). Postgenomics diagnostics: metabolomics approaches to human blood profiling. OMICS: A Journal of Integrative Biology, 17(11), 550–559. doi:10.1089/omi.2012.0121.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC genomics, 7, 142. doi:10.1186/1471-2164-7-142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Kuo, C., & Tseng, Y. J. (2013). Batch normalizer: A fast total abundance regression calibration method to simultaneouly adjust batch and injection order effects in liquid chromatography/time-of-fligth mass spectrometry-based metabolomics data and comparison with current calibration meth. Analytical Chemistry, 85, 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  • WHO. (2003). Screening for type 2 diabetes.

  • WHO. (1999) Definition, diagnosis and classification of diabetes mellitus and its complications.

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660. doi:10.1093/nar/gkp356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, F., Tavintharan, S., Sum, C. F., Woon, K., Lim, S. C., & Ong, C. N. (2013). Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. The Journal of Clinical Endocrinology and Metabolism, 98(6), E1060–E1065. doi:10.1210/jc.2012-4132.

    Article  CAS  PubMed  Google Scholar 

  • Yagil, C., Barkalifa, R., Sapojnikov, M., Wechsler, A., Ben-Dor, D., Weksler-Zangen, S., et al. (2007). Metabolic and genomic dissection of diabetes in the Cohen rat. Physiological Genomics, 29(2), 181–192. doi:10.1152/physiolgenomics.00210.2006.

    Article  CAS  PubMed  Google Scholar 

  • Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81(4), 1357–1364. doi:10.1021/ac8019366.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, M., Che, Z., Liang, Y., Wang, B., Chen, X., Li, H., et al. (2009). GC–MS based plasma metabolic profiling of type 2 diabetes mellitus. Chromatographia, 69(9–10), 941–948. doi:10.1365/s10337-009-1040-0.

    Article  CAS  Google Scholar 

  • Zhang, A. H., Qiu, S., Xu, H. Y., Sun, H., & Wang, X. J. (2014). Metabolomics in diabetes. Clinica Chimica Acta, 429, 106–110. doi:10.1016/j.cca.2013.11.037.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Agilent Technologies Brasil Ltda, Life Sciences & Chemical Analysis for the use of the GC/MS system (7890B gas chromatograph coupled to a mass selective detector model 5977A-Agilent) for support data collection.

Funding information

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2012/05447-0, 2012/12042-7, 2013-17368-0, PROADI_ SUS Project nº 25000.180664/2011-35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Costa Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were carried out in accordance with the ethics committee of the Hospital das Clinicas, University of São Paulo, Brazil (protocol number 3759/12/015), approved the study protocol.

Informed consent

All participants signed a written informed consent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

PCA scores plot based on the GC/MS spectra of serum samples obtained from diabetic patients treated and diabetic patients not treated with hypoglycemic medication. (PDF 20 kb)

Figure S2

Samples first principal component scores distributed by the day of analysis. The red points represent the diabetic samples subject. (TIFF 1346 kb)

Figure S3

Metabolites concentration before (A) and after (B) LOESS normalization according to injection order and day of analysis. (TIFF 2194 kb)

Figure S4

Representativity of significant metabolites found by polygenic analysis. The blue side represent diabetic group, and the red side represent the non-diabetic group. (TIFF 1426 kb)

Table S1

Main biological functions disturbed relate with metabolites found by PLS-DA to diabetic, pre-diabetic and non diabetic participants. In #molecules column is the number of metabolites present in each pathway. (DOCX 15 kb)

Table S2

Heritability (h2) estimates (in percentage) for each metabolite, unadjusted (Model 1), adjusted for age and sex (Model 2), and adjusted for age, sex and T2DM (Model 3). (XLSX 15 kb)

Table S3

Main biological functions disturbed by proximal metabolites. In #molecules column is the number of metabolites present in each pathway. (DOCX 15 kb)

Table S4

Main biological functions related to distal metabolites. In #molecules column is the number of metabolites present in each pathway. (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilha, K., Venturini, G., de Farias Pires, T. et al. Serum metabolomics profile of type 2 diabetes mellitus in a Brazilian rural population. Metabolomics 12, 156 (2016). https://doi.org/10.1007/s11306-016-1107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1107-5

Keywords

Navigation