Skip to main content
Log in

Pharmacometabolomic signature links simvastatin therapy and insulin resistance

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Statins, widely prescribed drugs for treatment of cardiovascular disease, inhibit the biosynthesis of low density lipoprotein cholesterol (LDL-C). Despite providing major benefits, sub populations of patients experience adverse effects, including muscle myopathy and development of type II diabetes mellitus (T2DM) that may result in premature discontinuation of treatment. There are no reliable biomarkers for predicting clinical side effects in vulnerable individuals. Pharmacometabolomics provides powerful tools for identifying global biochemical changes induced by statin treatment, providing insights about drug mechanism of action, development of side effects and basis of variation of response.

Objective

To determine whether statin-induced changes in intermediary metabolism correlated with statin-induced hyperglycemia and insulin resistance; to identify pre-drug treatment metabolites predictive of post-drug treatment increased diabetic risk.

Methods

Drug-naïve patients were treated with 40 mg/day simvastatin for 6 weeks in the Cholesterol and Pharmacogenetics (CAP) study; metabolomics by gas chromatography-time-of-flight mass-spectrometry (GC–TOF–MS) was performed on plasma pre and post treatment on 148 of the 944 participants.

Results

Six weeks of simvastatin treatment resulted in 6.9% of patients developing hyperglycemia and 25% developing changes consistent with development of pre-diabetes. Altered beta cell function was observed in 53% of patients following simvastatin therapy and insulin resistance was observed in 54% of patients. We identified initial signature of simvastatin-induced insulin resistance, including ethanolamine, hydroxylamine, hydroxycarbamate and isoleucine which, upon further replication and expansion, could be predictive biomarkers of individual susceptibility to simvastatin-induced new onset pre-type II diabetes mellitus. No patients were clinically diagnosed with T2DM.

Conclusion

Within this short 6 weeks study, some patients became hyperglycemic and/or insulin resistant. Diabetic markers were associated with decarboxylated small aminated metabolites as well as a branched chain amino acid directly linked to glucose metabolism and fatty acid biosynthesis. Pharmacometabolomics provides powerful tools for precision medicine by predicting development of drug adverse effects in sub populations of patients. Metabolic profiling prior to start of drug therapy may empower physicians with critical information when prescribing medication and determining prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bai, J. P. (2010). Ongoing challenges in drug interaction safety: From exposure to pharmacogenomics. Drug Metabolism and Pharmacokinetics, 25(1), 62–71.

    Article  CAS  PubMed  Google Scholar 

  • Baker, W. L., Talati, R., White, C. M., & Coleman, C. I. (2010). Differing effect of statins on insulin sensitivity in non-diabetics: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 87(1), 98–107. doi:10.1016/j.diabres.2009.10.008.

    Article  CAS  PubMed  Google Scholar 

  • Bang, C. N., & Okin, P. M. (2014). Statin treatment, new-onset diabetes, and other adverse effects: A systematic review. Current Cardiology Reports, 16(3), 461. doi:10.1007/s11886-013-0461-4.

    Article  PubMed  Google Scholar 

  • Brault, M., Ray, J., Gomez, Y. H., Mantzoros, C. S., & Daskalopoulou, S. S. (2014). Statin treatment and new-onset diabetes: A review of proposed mechanisms. Metabolism: Clinical and Experimental. doi:10.1016/j.metabol.2014.02.014.

    Google Scholar 

  • Cho, Y., Choe, E., Lee, Y. H., Seo, J. W., Choi, Y., Yun, Y., et al. (2015). Risk of diabetes in patients treated with HMG-CoA reductase inhibitors. Metabolism: Clinical and Experimental, 64(4), 482–488. doi:10.1016/j.metabol.2014.09.008.

    Article  CAS  Google Scholar 

  • Cho, Y., Lee, M. J., Choe, E. Y., Jung, C. H., Joo, D. J., Kim, M. S., et al. (2014). Statin therapy is associated with the development of new-onset diabetes after transplantation in liver recipients with high fasting plasma glucose levels. Liver Transplantation: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 20(5), 557–563. doi:10.1002/lt.23831.

    Article  Google Scholar 

  • Cohen, J. D., Brinton, E. A., Ito, M. K., & Jacobson, T. A. (2012). Understanding Statin Use in America and Gaps in Patient Education (USAGE): An internet-based survey of 10,138 current and former statin users. Journal of Clinical Lipidology, 6(3), 208–215. doi:10.1016/j.jacl.2012.03.003.

    Article  PubMed  Google Scholar 

  • DeMaster, E. G., Raij, L., Archer, S. L., & Weir, E. K. (1989). Hydroxylamine is a vasorelaxant and a possible intermediate in the oxidative conversion of l arginine to nitric oxide. Biochemical and Biophysical Research Communications, 163(1), 527–533.

    Article  CAS  PubMed  Google Scholar 

  • Dhatariya, K. K., Nunney, I., Higgins, K., Sampson, M. J., & Iceton, G. (2016). National survey of the management of Diabetic Ketoacidosis (DKA) in the UK in 2014. Diabetic Medicine: A Journal of the British Diabetic Association, 33(2), 252–260. doi:10.1111/dme.12875.

    Article  CAS  Google Scholar 

  • Gabriel, E., & Soni, S. (2014). Diabetic Ketoacidosis. Hospital Medicine Clinics, 3(4), 556–566. doi:10.1016/j.ehmc.2014.06.007.

    Article  Google Scholar 

  • Grundy, S. M., Cleeman, J. I., Merz, C. N., Brewer, H. B. Jr., Clark, L. T., Hunninghake, D. B., et al. (2004). Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation, 110(2), 227–239. doi:10.1161/01.cir.0000133317.49796.0e.

    Article  PubMed  Google Scholar 

  • Jasinska, M., Owczarek, J., & Orszulak-Michalak, D. (2007). Statins: A new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacological Reports: PR, 59(5), 483–499.

    CAS  PubMed  Google Scholar 

  • Jefferies, C. A., Nakhla, M., Derraik, J. G., Gunn, A. J., Daneman, D., & Cutfield, W. S. (2015). Preventing Diabetic Ketoacidosis. Pediatric Clinics of North America, 62(4), 857–871. doi:10.1016/j.pcl.2015.04.002.

    Article  PubMed  Google Scholar 

  • Kaddurah-Daouk, R., Baillie, R. A., Zhu, H., Zeng, Z. B., Wiest, M. M., Nguyen, U. T., et al. (2010). Lipidomic analysis of variation in response to simvastatin in the Cholesterol and Pharmacogenetics Study. Metabolomics, 6(2), 191–201. doi:10.1007/s11306-010-0207-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaddurah-Daouk, R., Baillie, R. A., Zhu, H., Zeng, Z. B., Wiest, M. M., Nguyen, U. T., et al. (2011). Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One, 6(10), e25482. doi:10.1371/journal.pone.0025482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653–683. doi:10.1146/annurev.pharmtox.48.113006.094715.

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk, R., & Weinshilboum, R. M. (2014). Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clinical Pharmacology and Therapeutics, 95(2), 154–167. doi:10.1038/clpt.2013.217.

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk, R., Weinshilboum, R., & Pharmacometabolomics Research Network. (2015). Metabolomic signatures for drug response phenotypes-pharmacometabolomics enables precision medicine. Clinical Pharmacology and Therapeutics. doi:10.1002/cpt.134.

    PubMed  PubMed Central  Google Scholar 

  • Kimura, T., Kato, E., Machikawa, T., Kimura, S., Katayama, S., & Kawabata, J. (2014). Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1. Biochemical and Biophysical Research Communications, 445(1), 6–9. doi:10.1016/j.bbrc.2014.01.039.

    Article  CAS  PubMed  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee do, Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81(24), 10038–10048. doi:10.1021/ac9019522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, K. K., Quon, M. J., Han, S. H., Lee, Y., Kim, S. J., Koh, Y., et al. (2010). Distinct vascular and metabolic effects of different classes of anti-hypertensive drugs. International Journal of Cardiology, 140(1), 73–81. doi:10.1016/j.ijcard.2008.11.017.

    Article  PubMed  Google Scholar 

  • Krauss, R. M., Zhu, H., & Kaddurah-Daouk, R. (2013). Pharmacometabolomics of statin response. Clinical Pharmacology and Therapeutics, 94(5), 562–565. doi:10.1038/clpt.2013.164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, M. C., & Wagner, C. (1975). Purification and characterization of N-methylalanine dehydrogenase. The JOURNAL of Biological Chemistry, 250(10), 3746–3751.

    CAS  PubMed  Google Scholar 

  • Macedo, A. F., Taylor, F. C., Casas, J. P., Adler, A., Prieto-Merino, D., & Ebrahim, S. (2014). Unintended effects of statins from observational studies in the general population: Systematic review and meta-analysis. BMC Medicine, 12(1), 51. doi:10.1186/1741-7015-12-51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangravite, L. M., Wilke, R. A., Zhang, J., & Krauss, R. M. (2008). Pharmacogenomics of statin response. Current Opinion in Molecular Therapeutics, 10(6), 555–561.

    CAS  PubMed  Google Scholar 

  • Muthulakshmi, S., Chakrabarti, A. K., & Mukherjee, S. (2015). Gene expression profile of high-fat diet-fed C57BL/6 J mice: In search of potential role of azelaic acid. Journal of Physiology and Biochemistry, 71(1), 29–42. doi:10.1007/s13105-014-0376-6.

    Article  CAS  PubMed  Google Scholar 

  • Muthulakshmi, S., & Saravanan, R. (2013). Efficacy of azelaic acid on hepatic key enzymes of carbohydrate metabolism in high fat diet induced type 2 diabetic mice. Biochimie, 95(6), 1239–1244. doi:10.1016/j.biochi.2013.01.018.

    Article  CAS  PubMed  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326. doi:10.1016/j.cmet.2009.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panagiotidis, G., Akesson, B., Rydell, E. L., & Lundquist, I. (1995). Influence of nitric oxide synthase inhibition, nitric oxide and hydroperoxide on insulin release induced by various secretagogues. British Journal of Pharmacology, 114(2), 289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial Correlation Estimation by Joint Sparse Regression Models. Journal of the American Statistical Association, 104(486), 735–746. doi:10.1198/jasa.2009.0126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randle, P. J., Patson, P. A., & Espinal, J. (1987). Branched-Chain Ketoacid Dehydrogenase. In E. G. K. P. D. Boyer (Ed.), The Enzymes (Vol. 18). Orlando: Academic Press, Inc.

    Google Scholar 

  • Ridker, P. M., Danielson, E., Fonseca, F. A., Genest, J., Gotto, A. M. Jr., Kastelein, J. J., et al. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. The New England Journal of Medicine, 359(21), 2195–2207. doi:10.1056/NEJMoa0807646.

    Article  CAS  PubMed  Google Scholar 

  • Ridker, P. M., Pradhan, A., MacFadyen, J. G., Libby, P., & Glynn, R. J. (2012). Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet, 380(9841), 565–571. doi:10.1016/s0140-6736(12)61190-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruscica, M., Macchi, C., Morlotti, B., Sirtori, C. R., & Magni, P. (2014). Statin therapy and related risk of new-onset type 2 diabetes mellitus. European Journal of Internal Medicine, 25(5), 401–406. doi:10.1016/j.ejim.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Sattar, N., Preiss, D., Murray, H. M., Welsh, P., Buckley, B. M., de Craen, A. J., et al. (2010). Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet, 375(9716), 735–742. doi:10.1016/s0140-6736(09)61965-6.

    Article  CAS  PubMed  Google Scholar 

  • Scholz, M., & Fiehn, O. (2007). SetupX—A public study design database for metabolomic projects. Pacific Symposium on Biocomputing, 169–180.

  • Simon, J. A., Lin, F., Hulley, S. B., Blanche, P. J., Waters, D., Shiboski, S., et al. (2006). Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: The Cholesterol and Pharmacogenetics (CAP) Study. The American Journal of Cardiology, 97(6), 843–850. doi:10.1016/j.amjcard.2005.09.134.

    Article  CAS  PubMed  Google Scholar 

  • Skaper, S. D., Facci, L., Barbierato, M., Zusso, M., Bruschetta, G., Impellizzeri, D., et al. (2015). N-Palmitoylethanolamine and Neuroinflammation: A Novel Therapeutic Strategy of Resolution. Molecular Neurobiology, 52(2), 1034–1042. doi:10.1007/s12035-015-9253-8.

    Article  CAS  PubMed  Google Scholar 

  • Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. Annals of statistics 6, 2013–2035, doi:10.1214/aos/1074290335.

    Article  Google Scholar 

  • Tai, E. S., Tan, M. L., Stevens, R. D., Low, Y. L., Muehlbauer, M. J., Goh, D. L., et al. (2010). Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia, 53(4), 757–767. doi:10.1007/s00125-009-1637-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trupp, M., Zhu, H., Wikoff, W. R., Baillie, R. A., Zeng, Z. B., Karp, P. D., et al. (2012). Metabolomics reveals amino acids contribute to variation in response to simvastatin treatment. PLoS One, 7(7), e38386. doi:10.1371/journal.pone.0038386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Buskirk, J. J., Kirsch, W. M., Kleyer, D. L., Barkley, R. M., & Koch, T. H. (1984). Aminomalonic acid: Identification in Escherichia coli and atherosclerotic plaque. Proceedings of the National Academy of Sciences of the United States of America, 81(3), 722–725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaquero, M. P., Sanchez Muniz, F. J., Jimenez Redondo, S., Prats Olivan, P., Higueras, F. J., & Bastida, S. (2010). Major diet-drug interactions affecting the kinetic characteristics and hypolipidaemic properties of statins. Nutricion hospitalaria: organo oficial de la Sociedad Espanola de Nutricion Parenteral y Enteral, 25(2), 193–206.

    CAS  Google Scholar 

  • Wang, K. L., Liu, C. J., Chao, T. F., Chen, S. J., Wu, C. H., Huang, C. M., et al. (2014). Risk of new-onset diabetes mellitus versus reduction in cardiovascular events with statin therapy. The American Journal of Cardiology, 113(4), 631–636. doi:10.1016/j.amjcard.2013.10.043.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Natural Medicines, 17(4), 448–453. doi:10.1038/nm.2307.

    Article  Google Scholar 

  • Wang, T. J., Ngo, D., Psychogios, N., Dejam, A., Larson, M. G., Vasan, R. S., et al. (2013). 2-Aminoadipic acid is a biomarker for diabetes risk. The Journal of Clinical Investigation, 123(10), 4309–4317. doi:10.1172/jci64801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtz, P., Makinen, V. P., Soininen, P., Kangas, A. J., Tukiainen, T., Kettunen, J., et al. (2012). Metabolic signatures of insulin resistance in 7098 young adults. Diabetes, 61(6), 1372–1380. doi:10.2337/db11-1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(Web Server issue), W127–W133. doi:10.1093/nar/gks374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(Web Server issue), W652–W660. doi:10.1093/nar/gkp356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257. doi:10.1093/nar/gkv380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeki, A. A., Bratt, J. M., Chang, K. Y., Franzi, L. M., Ott, S., Silveria, M., et al. (2015). Intratracheal instillation of pravastatin for the treatment of murine allergic asthma: a lung-targeted approach to deliver statins. Physiological Reports, 3(5), doi:10.14814/phy2.12352.

  • Zeki, A. A., Franzi, L., Last, J., & Kenyon, N. J. (2009). Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. American Journal of Respiratory and Critical Care Medicine, 180(8), 731–740. doi:10.1164/rccm.200901-0018OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by National Institute of General Medical Sciences Grants R24 GM078233 and RC2GM092729 for RKD ; and U01 HL069757, “Pharmacogenomics and Risk of Cardiovascular Disease” (RMK) and by NIH Grant DK097154 (ME-S and OF) is acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald M. Krauss, Oliver Fiehn or Rima Kaddurah-Daouk.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Ethical approval

Approval for the analysis of simvastatin response in the CAP study was granted by the Children’s Hospital and Research Center Institutional Review Board, University of California San Francisco Committee on Human Research, and University of California Los Angeles Office of the Human Research Protection Program.

Informed consent

We obtained written, informed consent from all participants for inclusion in the original study and future studies. The research was conducted in accordance with the Declaration of Helsinki.

Additional information

Mona Elbadawi-Sidhu, Rebecca A. Baillie and Hongjie Zhu have equally contributed to this work.

Trial Registration: ClinicalTrials.gov NCT00451828.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbadawi-Sidhu, M., Baillie, R.A., Zhu, H. et al. Pharmacometabolomic signature links simvastatin therapy and insulin resistance. Metabolomics 13, 11 (2017). https://doi.org/10.1007/s11306-016-1141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1141-3

Keywords

Navigation