Skip to main content
Log in

Evaluation of the Integrity of the Dopamine System in a Rodent Model of Parkinson’s Disease: Small Animal Positron Emission Tomography Compared to Behavioral Assessment and Autoradiography

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease (PD), it is important to determine lesion severity. This evaluation can be performed in vivo, through evaluation of dopamine (DA)-dependent motor function or with small animal positron emission tomography (microPET), or at postmortem, by examining markers for DA neurons.

Procedures

Rats were given mild or severe unilateral 6-OHDA lesions, scanned with the tracer [11C](±)dihydrotetrabenazine ([11C]DTBZ), and tested on a tapered/ledged beam-walking task. At postmortem, autoradiography was performed with [11C]DTBZ.

Results

Autoradiography was significantly correlated with microPET and behavioral scores, whereas the microPET and behavioral data were not significantly correlated.

Conclusions

This study shows that behavioral analysis, microPET, and autoradiography are all good tools for measuring the integrity of the DA system, and demonstrates the utility of the tapered/ledged beam-walking test to screen for lesion severity, as well as the importance of including postmortem analysis after in vivo imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  PubMed  CAS  Google Scholar 

  2. Costall B, Naylor RJ, Pycock C (1976) Non-specific supersensitivity of striatal dopamine receptors after 6-hydroxydopamine lesion of the nigrostriatal pathway. Eur J Pharmacol 35:276–283

    PubMed  CAS  Google Scholar 

  3. Morelli M, Fenu S, Garau L, Di Chiara G (1989) Time and dose dependence of the ‘priming’ of the expression of dopamine receptor supersensitivity. Eur J Pharmacol 162:329–335

    Article  PubMed  CAS  Google Scholar 

  4. Klug JM, Norman AB (1993) Long-term sensitization of apomorphine-induced rotation behavior in rats with dopamine deafferentation or excitotoxin lesions of the striatum. Pharmacol Biochem Behav 46:397–403

    Article  PubMed  CAS  Google Scholar 

  5. Tai YC, Ruangma A, Rowland D, et al. (2005) Performance evaluation of the microPET focus: A third-generation microPET scanner dedicated to animal imaging. J Nucl Med 46:455–463

    PubMed  Google Scholar 

  6. Yang Y, Tai YC, Siegel S, et al. (2004) Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 49:2527–2545

    Article  PubMed  Google Scholar 

  7. Knoess C, Siegel S, Smith A, et al. (2003) Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 30:737–747

    Article  PubMed  Google Scholar 

  8. Tai C, Chatziioannou A, Siegel S, et al. (2001) Performance evaluation of the microPET P4: A PET system dedicated to animal imaging. Phys Med Biol 46:1845–1862

    Article  PubMed  CAS  Google Scholar 

  9. Tai YC, Chatziioannou AF, Yang Y, et al. (2003) MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 48:1519–1537

    Article  PubMed  Google Scholar 

  10. Huang N, Ase AR, Hebert C, van Gelder NM, Reader TA (1997) Effects of chronic neuroleptic treatments on dopamine D1 and D2 receptors: Homogenate binding and autoradiographic studies. Neurochem Int 30:277–290

    Article  PubMed  CAS  Google Scholar 

  11. Rinne JO, Laihinen A, Ruottinen H, et al. (1995) Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: A PET study with [11C]raclopride. J Neurol Sci 132:156–161

    Article  PubMed  CAS  Google Scholar 

  12. Narang N, Wamsley JK (1995) Time dependent changes in DA uptake sites, D1 and D2 receptor binding and mRNA after 6-OHDA lesions of the medial forebrain bundle in the rat brain. J Chem Neuroanat 9:41–53

    Article  PubMed  CAS  Google Scholar 

  13. Nikolaus S, Larisch R, Beu M, Vosberg H, Muller-Gartner HW (2001) Imaging of striatal dopamine D2 receptors with a PET system for small laboratory animals in comparison with storage phosphor autoradiography: A validation study with 18F-(N-Methyl)Benperidol. J Nucl Med 42:1691–1696

    PubMed  CAS  Google Scholar 

  14. Doudet DJ, Jivan S, Ruth TJ, Holden JE (2002) Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11C]raclopride. Synapse 44:198–202

    Article  PubMed  CAS  Google Scholar 

  15. Wilson JM, Nobrega JN, Carroll ME, et al. (1994) Heterogeneous subregional binding patterns of 3H-WIN 35,428 and 3H-GBR 12,935 are differentially regulated by chronic cocaine self-administration. J Neurosci 14:2966–2979

    PubMed  CAS  Google Scholar 

  16. Kilbourn MR, Sherman PS, Pisani T (1992) Repeated reserpine administration reduces in vivo [18F]GBR 13119 binding to the dopamine uptake site. Eur J Pharmacol 216:109–112

    Article  PubMed  CAS  Google Scholar 

  17. Doudet DJ (2001) PET studies in the MPTP model of Parkinson's disease. Adv Neurol 86:187–195

    PubMed  CAS  Google Scholar 

  18. Lee CS, Samii A, Sossi V, et al. (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol 47:493–503

    Article  PubMed  CAS  Google Scholar 

  19. Wilson JM, Kish SJ (1996) The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. J Neurosci 16:3507–3510

    PubMed  CAS  Google Scholar 

  20. Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K (1995) The vesicular monoamine transporter is not regulated by dopaminergic treatments. Eur J Pharmacol 294:577–583

    Article  Google Scholar 

  21. Frey KA, Wieland DM, Kilbourn MR (1998) Imaging of monoaminergic and cholinergic vesicular transporters in the brain. Adv Pharmacol 42:269–272

    Article  PubMed  CAS  Google Scholar 

  22. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. San Diego: Academic Press

    Google Scholar 

  23. Schallert T, Woodlee MT (2005) Orienting and Placing. In: Whishaw IQ, Kolb B (eds) The Behavior of the Laboratory Rat: A Handbook with Tests. New York: Oxford University Press, pp 129–140

    Google Scholar 

  24. Zhao CS, Puurunen K, Schallert T, Sivenius J, Jolkkonen J (2005) Behavioral and histological effects of chronic antipsychotic and antidepressant drug treatment in aged rats with focal ischemic brain injury. Behav Brain Res 158:211–220

    Article  PubMed  CAS  Google Scholar 

  25. Feeney DM, Gonzalez A, Law WA (1982) Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217:855–857

    Article  PubMed  CAS  Google Scholar 

  26. Walsh SL, Wagner GC (1992) Motor impairments after methamphetamine-induced neurotoxicity in the rat. J Pharmacol Exp Ther 263:617–626

    PubMed  CAS  Google Scholar 

  27. Bowenkamp KE, Ujhelyi L, Cline EJ, Bickford PC (2000) Effects of intra-striatal GDNF on motor coordination and striatal electrophysiology in aged F344 rats. Neurobiol Aging 21:117–124

    Article  PubMed  CAS  Google Scholar 

  28. Zar JH (1999) Biostatistical Analysis. Upper Saddle River: Prentice-Hall

    Google Scholar 

  29. Rubins DJ, Meadors AK, Yee S, Melega WP, Cherry SR (2001) Evaluation of a stereotactic frame for repositioning of the rat brain in serial positron emission tomography imaging studies. J Neurosci Methods 107:63–70

    Article  PubMed  CAS  Google Scholar 

  30. Jewett DM, Kilbourn MR, Lee LC (1997) A simple synthesis of [11C]dihydrotetrabenazine (DTBZ). Nucl Med Biol 24:197–199

    Article  PubMed  CAS  Google Scholar 

  31. Alexoff D, Vaska P, Marsteller D, et al. (2003) Reproducibility of 11C-raclopride binding in the rat brain measured with microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med 44:815–822

    PubMed  CAS  Google Scholar 

  32. Strome EM, Jivan S, Doudet DJ (2005) Quantitative in vitro phosphor imaging using [3H] and [18F] radioligands: The effects of chronic desipramine treatment on serotonin 5-HT2 receptors. J Neurosci Methods 141:143–154

    Article  PubMed  CAS  Google Scholar 

  33. Darchen F, Masuo Y, Vial M, Rostene W, Scherman D (1989) Quantitative autoradiography of the rat brain vesicular monoamine transporter using the binding of [3H]dihydrotetrabenazine and 7-amino-8-[125I]iodoketanserin. Neuroscience 33:341–349

    Article  PubMed  CAS  Google Scholar 

  34. Masuo Y, Pelaprat D, Scherman D, Rostene W (1990) [3H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci Lett 114:45–50

    Article  PubMed  CAS  Google Scholar 

  35. Nikolaus S, Larisch R, Beu M, et al. (2003) In vivo measurement of D2 receptor density and affinity for 18F-(3-N-methyl) benperidol in the rat striatum with a PET system for small laboratory animals. J Nucl Med 44:618–624

    PubMed  CAS  Google Scholar 

  36. Matsumura A, Mizokawa S, Tanaka M, et al. (2003) Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: Comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 20:2040–2050

    Article  PubMed  Google Scholar 

  37. Moore AH, Osteen CL, Chatziioannou A, Hovda DA, Cherry SR (2000) Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat using FDG-microPET. J Cereb Blood Flow Metab 20:1492–1501

    Article  PubMed  CAS  Google Scholar 

  38. Momosaki S, Hatano K, Kawasumi Y, et al. (2004) Rat-PET study without anesthesia: Anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse 54:207–213

    Article  PubMed  CAS  Google Scholar 

  39. Vollenweider FX, Vontobel P, Oye I, Hell D, Leenders KL (2000) Effects of (S)-ketamine on striatal dopamine: A [11C]raclopride PET study of a model psychosis in humans. J Psychiatr Res 34:35–43

    Article  PubMed  CAS  Google Scholar 

  40. Kobayashi K, Inoue O, Watanabe Y, Onoe H, Langstrom B (1995) Difference in response of D2 receptor binding between 11C-N-methylspiperone and 11C-raclopride against anesthetics in rhesus monkey brain. J Neural Transm Gen Sect 100:147–151

    Article  PubMed  CAS  Google Scholar 

  41. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission computed tomography: 5. Physical–anatomical effects. J Comput Assist Tomogr 5:734–743

    Article  PubMed  CAS  Google Scholar 

  42. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for technical assistance from Siobhan McCormick (microPET technician), Rick Kornelsen, and Jessica Grant (animal technicians), and to the staff at the UBC Animal Resource Unit. The authors would also like to acknowledge the staff of the UBC/TRIUMF PET group, and in particular Dr. Tom Ruth (Head), for their support of these studies. This work was supported by The Canadian Foundation for Innovation, The Canadian Institutes of Health Research, and the Michael Smith Foundation for Health Research. A version of this work was presented at the Academy of Molecular Imaging 2005 Annual Meeting, Orlando, FL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elissa M. Strome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strome, E.M., Cepeda, I.L., Sossi, V. et al. Evaluation of the Integrity of the Dopamine System in a Rodent Model of Parkinson’s Disease: Small Animal Positron Emission Tomography Compared to Behavioral Assessment and Autoradiography. Mol Imaging Biol 8, 292–299 (2006). https://doi.org/10.1007/s11307-006-0051-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-006-0051-6

Key words

Navigation