Skip to main content

Advertisement

Log in

Molecular Imaging of Brain Tumors: A Bridge Between Clinical and Molecular Medicine?

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

As the research on cellular changes has shed invaluable light on the pathophysiology and biochemistry of brain tumors, clinical and experimental use of molecular imaging methods is expanding and allows quantitative assessment. The term molecular imaging is defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Molecular imaging sets forth to probe the molecular abnormalities that are the basis of disease rather than to visualize the end effects of these molecular alterations and, therefore, provides different additional biochemical or molecular information about primary brain tumors compared to histological methods “classical” neuroradiological diagnostic studies. Common clinical indications for molecular imaging contain primary brain tumor diagnosis and identification of the metabolically most active brain tumor reactions (differentiation of viable tumor tissue from necrosis), prediction of treatment response by measurement of tumor perfusion, or ischemia. The interesting key question remains not only whether the magnitude of biochemical alterations demonstrated by molecular imaging reveals prognostic value with respect to survival, but also whether it identifies early disease and differentiates benign from malignant lesions. Moreover, an early identification of treatment success or failure by molecular imaging could significantly influence patient management by providing more objective decision criteria for evaluation of specific therapeutic strategies. Specially, as molecular imaging represents a novel technology for visualizing metabolism and signal transduction to gene expression, reporter gene assays are used to trace the location and temporal level of expression of therapeutic and endogenous genes. Molecular imaging probes and drugs are being developed to image the function of targets without disturbing them and in mass amounts to modify the target’s function as a drug. Molecular imaging helps to close the gap between in vitro and in vivo integrative biology of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beaumont A, Whittle IR (2000) The pathogenesis of tumor associated epilepsy. Acta Neurochir 142:1–15

    Article  CAS  Google Scholar 

  2. Schaller B (2003) Neuroprotection in brain tumors—pathophysiological sense or nonsense? Nervenarzt 74:1134–1136

    Article  PubMed  CAS  Google Scholar 

  3. Schaller B (2005) Influences of brain tumor-associated pH changes and hypoxia on epileptogenesis. Acta Neurol Scand 111:75–83

    Article  PubMed  CAS  Google Scholar 

  4. Schaller BJ, Buchfelder M (2006) Neuroprotection in primary brain tumors: Sense or nonsense? Expert Rev Neurother 6:723–730

    Article  PubMed  CAS  Google Scholar 

  5. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  6. Barker FG, Israel MA (1999) Molecular genetics. In: Berger MS, Wilson CB (eds) The gliomas. Philadelphia: W.B. Saunders Co, pp 39–51

    Google Scholar 

  7. Ichimura K, Bolin MB, Goike HM, et al. (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60:417–424

    PubMed  CAS  Google Scholar 

  8. Jacobs AH, Kracht LW, Gossmann, et al. (2005) Imaging in neurooncology. NeuroRx 2:333–347

    Article  PubMed  Google Scholar 

  9. Morrison RS (1999) Growth factor mediated signaling pathways. In: Berger MS, Wilson CB (eds) The gliomas. Philadelphia: W.B. Saunders, pp 52–64

    Google Scholar 

  10. Kleihues P, Burger PC, Collins VP, et al. (2000) Glioblastoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. World Health Organization Classification of Tumours. Lyon: IARC Press, pp 29–39

    Google Scholar 

  11. Lang FF, Miller DC, Koslow M, et al. (1994) Pathways leading to glioblastoma multiforme: A molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 81:427–436

    PubMed  CAS  Google Scholar 

  12. Cairncross JG, Ueki K, Zlatescu MC, et al. (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479

    Article  PubMed  CAS  Google Scholar 

  13. DeAngelis LM, Burger PC, Green SB, et al. (1998) Malignant glioma: Who benefits from adjuvant chemotherapy? Ann Neurol 44:691–695

    Article  PubMed  CAS  Google Scholar 

  14. Reifenberger G, Louis DN (2003) Oligodendroglioma: Toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol 62:111–126

    PubMed  CAS  Google Scholar 

  15. Sasaki H, Zlatescu MC, Betensky RA, et al. (2002) Histopathological-molecular genetic correlations in referral pathologist-diagnosed low-grade “oligodendroglioma.” J Neuropathol Exp Neurol 61:58–63

    PubMed  Google Scholar 

  16. Buonocore E (1992) Comparison of PET with conventional imaging techniques, in clinical positron emission tomography. St. Louis, MO: Mosby-Year Book, pp 17–2

    Google Scholar 

  17. Del Sole A, Falini A, Ravasi L, et al. (2001) Anatomical and biochemical investigation of primary brain tumours. Eur J Nucl Med 28:1851–1872

    Article  PubMed  CAS  Google Scholar 

  18. Jasanoff A (2005) Functional MRI using molecular imaging agents. Trends Neurosci 28:120–126

    Article  PubMed  CAS  Google Scholar 

  19. Schaller B (2004) Usefulness of positron emission tomography in diagnosis and treatment follow-up of brain tumors. Neurobiol Dis 15:437–448

    Article  PubMed  CAS  Google Scholar 

  20. Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: Current and future perspectives. J Clin Invest 111:1620–1629

    Article  PubMed  CAS  Google Scholar 

  21. Heiss WD, Pawlik G, Herholz K, et al. (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-d-glucose. J Cereb Blood Flow Metab 4:212–223

    PubMed  CAS  Google Scholar 

  22. Phelps ME (2000) PET: The merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681

    PubMed  CAS  Google Scholar 

  23. Sokoloff L, Reivich M, Kennedy C, et al. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  24. Derlon JM, Borudet C, Bustany P, et al. (1989) (11C)L-methionine uptake in gliomas. Neurosurgery 25:720–728

    Article  PubMed  CAS  Google Scholar 

  25. Patronas NJ, DiChiro G, Kuftas C, et al. (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62:816–822

    PubMed  CAS  Google Scholar 

  26. Ogawa T, Shishido F, Kanno I, et al. (1993) Cerebral glioma: Evaluation with methionine PET. Radiology 186:45–53

    PubMed  CAS  Google Scholar 

  27. Mosskin M, Bergstrom M, Collins VP, et al. (1986) Positron emission tomography with 11C-methionione of intracranial tumors compared with histology of multiple biopsies. Acta Radiol Suppl 369:157–160

    PubMed  CAS  Google Scholar 

  28. Kaschten B, Stevenaert A, Sadzot B, et al. (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  29. Roelcke U, Leenders KL (1999) Positron emission tomography in patients with primary CNS lymphomas. J Neuro-Oncol 43:231–236

    Article  CAS  Google Scholar 

  30. Pruim J, Wilemsen AT, Molenaar WM, et al. (1995) Brain tumors: L-(11C)tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 197:221–226

    PubMed  CAS  Google Scholar 

  31. Wienhard K, Herholz K, Voges J, et al. (1991) Increased amino acid transport into brain tumors measured by PET of L-(218F)fluorotyrosine. J Nucl Med 32:1338–1346

    PubMed  CAS  Google Scholar 

  32. DeWolde H, Pruim J, Mastik MF, et al. (1997) Proliferative activity in human brain tumors: Comparison of histopathology and L-(1-11C)tyrosine PET. J Nucl Med 38:1369–1374

    CAS  Google Scholar 

  33. Kracht LW, Friese M, Herholz K, et al. (2003) Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    Article  PubMed  CAS  Google Scholar 

  34. Kole AC, Plaat BE, Hockstra HJ, et al. (1999) FDG and L-(1-11C)-tyrosine imaging of soft-tissue tumors before and after therapy. J Nucl Med 40:381–386

    PubMed  CAS  Google Scholar 

  35. Wienhard K, Pawlik G, Nebeling B, et al. (1991) Estimation of local cerebral glucose utilization by positron emission tomography: Comparison of [18F]2-fluoro-2-deoxy-d-glucose and [18F]2-fluoro-2-deoxy-d-mannose in patients with focal brain lesions. J Cereb Blood Flow Metab 11:485–491

    PubMed  CAS  Google Scholar 

  36. Sato N, Suzuki M, Kuwata N, et al. (1999) Evaluation of the malignancy of glioma using 11C-methione positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 22:210–214

    Article  PubMed  CAS  Google Scholar 

  37. Nyberg G, Bergstrom M, Enblad P, et al. (1997) PET methionine of skull base neuromas and meningiomas. Acta Oto-laryngol 117:482–489

    CAS  Google Scholar 

  38. Herholz K, Rudolf J, Heiss WD (1992) FDG transport and phosphorylation in human gliomas measured with dynamic PET. J Neuro-Oncol 12:159–165

    Article  CAS  Google Scholar 

  39. Bauer A, Langen KJ, Bidmer H, et al. (2005) 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med 46:450–454

    PubMed  CAS  Google Scholar 

  40. Bergstrom M, Collins VP, Ehrin E, et al. (1983) Discrepancies in brain tumor extend as shown by computed tomography and positron emission tomography using (68Ga)EDTA (11C)glucose, and (11C)methionine. J Comput Assist Tomogr 7:1062–1066

    Article  PubMed  CAS  Google Scholar 

  41. Grosu AL, Weber WA, Riedel E, et al. (2005) L-(methyl-11C) methionine positrone emission tomogrpahy for target delineation in resected high-grade gliomas bifore radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74

    Article  PubMed  CAS  Google Scholar 

  42. Mineura K, Sasajima T, Kowada M, et al. (1991) Innovative approach in the diagnosis of gliomatosis cerebri using carbon-11 L-methionine positron emission tomography. J Nucl Med 32:726–728

    PubMed  CAS  Google Scholar 

  43. Duncan JD, Moss SD, Bandy DJ, et al. (1997) Use of positron emission tomography for presurgical localization of eloquent brain areas in children with seizures. Pediatr Neurosurg 26:144–156

    PubMed  CAS  Google Scholar 

  44. Choi SJ, Kim JS, Kim JH, et al. (2006) 18F-3-deoxy-3-fluorothymidine PET for the diagnosis and grading for tumors. Eur J Nucl Med Mol Imaging (in press)

  45. Goldman S, Levivier M, Piorotte B, et al. (1997) Regional methionine and glucose uptake in high-grade gliomas: A comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462

    PubMed  CAS  Google Scholar 

  46. Go KG, Keuter EJ, Kamman RL, et al. (1994) Contribution of magnetic resonance spectroscopic imaging and L-(1-11C)tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 34:994–1102

    PubMed  CAS  Google Scholar 

  47. Costa DC, Gacinovic S, Miller RF (1995) Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS). Q J Nucl Med 36:243–249

    Google Scholar 

  48. Wurker M, Herholz K, Voges J, et al. (1996) Glucose consumption and methionine uptake in low-grade gliomas after iodone-125 brachytherapy. Eur J Nucl Med 23:583–586

    Article  PubMed  CAS  Google Scholar 

  49. Hoffman JM, Hanson MW, Friedman HS, et al. (1992) FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr 16:62–68

    Article  PubMed  CAS  Google Scholar 

  50. Kaplan AM, Bandy DJ, Manwaring KH, et al. (1999) Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 91:797–803

    PubMed  CAS  Google Scholar 

  51. Utriainen M, Metsahonkala L, Salmi TT, et al. (2002) Metabolic characterization of childhood brain tumors: Comparison of 18F-flurodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1388

    Article  PubMed  Google Scholar 

  52. Jacobs A, Tjuvajev JG, Dubrovin M, et al. (2001) Positron emission tomography-based imaging of transgene expression mediated by replication—conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 61:2983–2995

    PubMed  CAS  Google Scholar 

  53. Luciganini G, Losa M, Moresco RM, et al. (1997) Differentiation of clinically non-functioning pituitary adenomas from meningiomas and craniopharyngiomas by positron emission tomography wit (18F)fluoro-ethyl-spiperone. Eur J Nucl Med 24:1149–1155

    Google Scholar 

  54. Jacobs AH, Dittmar C, Winkeler A, et al. (2002) Molecular imaging of gliomas. Mol Imaging 1:309–335

    Article  PubMed  CAS  Google Scholar 

  55. Su H, Forbes A, Gambhir SS, et al. (2004) Quantization of cell number by a positron emission tomography reporter gene strategy. Mol Imaging Biol 6:139–148

    Article  PubMed  Google Scholar 

  56. Doubrovin M, Ponomarev V, Beresten T, et al. (2001) Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 98:9300–9305

    Article  PubMed  CAS  Google Scholar 

  57. Serganova I, Doubrovin M, Vider J, et al. (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64:6101–6108

    Article  PubMed  CAS  Google Scholar 

  58. Uhrbom L, Nerio E, Holland EC (2004) Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat Med 10:1257–1260

    Article  PubMed  CAS  Google Scholar 

  59. Wen B, Burgman P, Zanzonico P, et al. (2004) A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia. Eur J Nucl Med Mol Imaging 31:1530–1538

    Article  PubMed  CAS  Google Scholar 

  60. Anderson SA, Glod J, Arbab AS, et al. (2004) Non-invasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105:420–425

    Article  PubMed  CAS  Google Scholar 

  61. Chen X, Park R, Shahinian AH, et al. (2004) 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189

    Article  PubMed  CAS  Google Scholar 

  62. Haubner R, Wester HJ, Weber WA, et al. (2001) Noninvasive imaging of α(v)ß3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  63. Sundaresan G, Yazaki PJ, Shively JE, et al. (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44:1962–1969

    PubMed  CAS  Google Scholar 

  64. van Waarde A, Buursma AR, Hospers GA, et al. (2004) Tumor imaging with 2 δ-receptor ligands, 18F-FE-SA5845 and 11C-SA4503: A feasibility study. J Nucl Med 45:1939–1945

    PubMed  Google Scholar 

  65. Grohn OH, Valonen PK, Lehtimaki KK, et al. (2003) Novel magnetic resonance imaging contrasts for monitoring response to gene therapy in rat glioma. Cancer Res 63:7571–7574

    PubMed  Google Scholar 

  66. Jacobs AH, Winkeler A, Hartung M, et al. (2003) Improved HSV-1 amplicon vectors for proportional coexpression of PET marker and therapeutic genes. Hum Gene Ther 14:277–297

    Article  PubMed  CAS  Google Scholar 

  67. Ponomarev V, Doubrovin M, Serganova I, et al. (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31:740–751

    Article  PubMed  CAS  Google Scholar 

  68. Hamstra DA, Lee KC, Tychewicz JM, et al. (2004) The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Molec Ther 10:916–928

    Article  CAS  Google Scholar 

  69. Mamot C, Nguyen JB, Pourdehnad M, et al. (2004) Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J. Neuro-oncol 68:1–9

    Article  Google Scholar 

  70. Saito R, Bringas JR, McKnight TR, et al. (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64:2572–2579

    Article  PubMed  CAS  Google Scholar 

  71. Rehemtulla A, Stegman LD, Cardozo SJ, et al. (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491–495

    Article  PubMed  CAS  Google Scholar 

  72. Ross BD, Chenevert TL, Garwood M, et al. (2003) Evaluation of (E)-2′-deoxy-2′-(fluoromethylene)cytidine on the 9L rat brain tumor model using MRI. NMR Biomed 16:67–76

    Article  PubMed  CAS  Google Scholar 

  73. Rubin JB, Kung AL, Klein RS, et al. (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A 100:13513–13518

    Article  PubMed  CAS  Google Scholar 

  74. Schmidt KF, Ziu M, Schmidt NO, et al. (2004) Volume reconstruction techniques improve the correlation between histological and in vivo tumor volume measurements in mouse models of human gliomas. J Neuro-oncol 68:207–215

    Article  Google Scholar 

  75. Schmidt NO, Ziu M, Carrabba G, et al. (2004) Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model. Clin Cancer Res 10:1255–1262

    Article  PubMed  CAS  Google Scholar 

  76. Sun Y, Schmidt NO, Schmidt K, et al. (2004) Perfusion MRI of U87 brain tumors in a mouse model. Magn Reson Med 51:893–899

    Article  PubMed  Google Scholar 

  77. Valonen PK, Lehtimaki KK, Vaisanen TH, et al. (2004) Water diffusion in a rat glioma during ganciclovir-thymidine kinase gene therapy-induced programmed cell death in vivo: Correlation with cell density. J Magn Reson Imaging 19:389–396

    Article  PubMed  Google Scholar 

  78. Vooijs M, Jonkers J, Lyons S, et al. (2002) Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res 62:1862–1867

    PubMed  CAS  Google Scholar 

  79. Jacobs A, Braulich I, Graf R, et al. (2001) Quantitative kinetics of (124I)FIAU in cat and man. J Nucl Med 42:467–475

    PubMed  CAS  Google Scholar 

  80. Voges J, Reszka R, Gossmann A, et al. (2003) Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 54:479–487

    Article  PubMed  CAS  Google Scholar 

  81. Kircher MF, Mahmood U, King RS, et al. (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    PubMed  CAS  Google Scholar 

  82. Macdonald DR, Cascino TL, Schold SC Jr, et al. (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    PubMed  CAS  Google Scholar 

  83. Therasse P, Arbuck SG, Eisenhauer EA, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  84. Parulekar WR, Eisenhauer EA (2002) Novel endpoints and design of early clinical trials. Ann Oncol 13:139–143

    PubMed  Google Scholar 

  85. Korn EL, Arbuck SG, Pluda JM, et al. (2001) Clinical trial designs for cytostatic agents: Are new approaches needed? J Clin Oncol 19:265–272

    PubMed  CAS  Google Scholar 

  86. Hanson MW, Hoffman JM, Glantz MJ (1990) FDG-PET in the early postoperative evaluation of patients with brain tumor. J Nucl Med 31:799

    Google Scholar 

  87. Kim EE, Chung SK, Haynie TP, et al. (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12:269–279

    PubMed  CAS  Google Scholar 

  88. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. (1993) Fluorodeoxyglucose imaging in advanced head and neck cancer after chemotherapy. J Nucl Med 34:12–17

    PubMed  CAS  Google Scholar 

  89. DiChiro G, Oldfield E, Wright DC, et al. (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Radiol 150:189–197

    CAS  Google Scholar 

  90. Ishikawa M, Kikuchi H, Miyatake S, et al. (1993) Glucose consumption in recurrent gliomas. Neurosurgery 33:28–33

    PubMed  CAS  Google Scholar 

  91. DeWitte O, Hildebrand J, Luxen A, et al. (1994) Acute effect of camastine on glucose metabolism in brain and glioblastoma. Cancer 74:2836–2842

    Article  CAS  Google Scholar 

  92. Chao ST, Suh JH, Raja S, et al. (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197

    Article  PubMed  CAS  Google Scholar 

  93. Holzer T, Herholz K, Jseke HJ, et al. (1998) FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 17:681–687

    Google Scholar 

  94. Schifter T, Hoffmann JM, Hanson MW, et al. (1993) Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17:509–561

    Article  PubMed  CAS  Google Scholar 

  95. Lilja A, Lundqvist H, Olsson Y, et al. (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesion. Acta Radiol 30:121–128

    Article  PubMed  CAS  Google Scholar 

  96. Segawa H, Fukasawa Y, Miyamato K, et al. (1999) Identification and functional characterization of a Na2+ independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–19751

    Article  PubMed  CAS  Google Scholar 

  97. Woesler B, Kuwert T, Morgenroth C, et al. (1997) Non-invasive grading of primary brain tumours: Results of a comparative study between SPET with 123I-alpha-methyl tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 24:428–434

    PubMed  CAS  Google Scholar 

  98. Sonoda Y, Kumabe T, Takahashi T, et al. (1998) Clinical usefulness of 11C-MET PET and 210TI SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir 38:342–347

    Article  CAS  Google Scholar 

  99. Tsugyuguchi N, Sunada I, Iwai Y, et al. (2003) Methionine positron emission tomography of recurrent metastatic brain tumors and radiation necrosis after stereotactic radiosurgery: Is a differential diagnosis possible? J Neurosurg 98:1056–1064

    Google Scholar 

  100. Dethy S, Goldman S, Belcic S, et al. (1994) Carbon-11-methionine and fluorine-18-FDG-PET study in brain hemeatoma. J Nucl Med 35:1162–1166

    PubMed  CAS  Google Scholar 

  101. Heesters MA, Go KG, Kamman RL, et al. (1998) 11C-tyrosine positron emission tomography and 1H magnetic resonance spectroscopy of the response of brain gliomas to radiotherapy. Neuroradiology 40:103–108

    Article  PubMed  CAS  Google Scholar 

  102. Voges J, Herholz K, Holzer T, et al. (1997) 11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: A tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact Funct Neurosurg 69:129–135

    Article  PubMed  CAS  Google Scholar 

  103. DiChiro G, De La Paz RL, Brroks RA, et al. (1982) Glucose-utilization of cerebral gliomas measured by (18F) fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    CAS  Google Scholar 

  104. Alavi JB, Alavi A, Chawluk J, et al. (1998) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:1074–1078

    Article  Google Scholar 

  105. DiChiro G (1987) Positron emission tomography using (18F) fluordeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22:360–371

    Article  CAS  Google Scholar 

  106. Jacobs A, Voges J, Reszka R, et al. (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358:727–729

    Article  PubMed  CAS  Google Scholar 

  107. Muutinen J, Sonninen P, Lehikoinen P, et al. (2000) Radiotherapy treatment planning and long-term follow-up with (11C)methionine PET in patients with low-grade follow-up with (11C)methionione PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52

    Article  Google Scholar 

  108. Schaller B. State-of-the-art-imaging-methods to investigate the neurovascular mechanism in the origin of Alzheimer’s disease. Differential diagnostic evaluations to other types of dementia (in press)

  109. Aboody K, Brown A, Rainov NG, et al. (2000) Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97:12846–12851

    Article  PubMed  CAS  Google Scholar 

  110. Benedetti S, Pirola B, Pllo B, et al. (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6:447–450

    Article  PubMed  CAS  Google Scholar 

  111. Schmidt NO, Przylecki W, Yang W, et al. (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7:623–629

    Article  PubMed  CAS  Google Scholar 

  112. Staflin K, Honeth G, Kalliomaki S, et al. (2004) Neural progenitor cell lines rat inhibit tumor growth in vivo. Cancer Res 64:5347–5354

    Article  PubMed  CAS  Google Scholar 

  113. Ethesham M, Kabos P, Kabosova A, et al. (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62:5657–5663

    Google Scholar 

  114. Fomchenko EI, Holland EC (2005) Stem cells and brain cancer. Exp Cell Res 306:323–329

    Article  PubMed  CAS  Google Scholar 

  115. Modo M, Roberts TJ, Sandhu JK, Williams SCR (2004) In vivo monitoring of cellular transplants by magnetic resonance imaging and positron emission tomography. Expert Opin Bio Ther 4:145–155

    Article  Google Scholar 

  116. Zlokovic BV, Apuzzo ML (1997) Cellular and molecular neurosurgery: Pathways from concept to reality—Part 1: Target disorders and concept approaches to gene therapy of the central nervous system. Neurosurgery 40:789–803

    Article  PubMed  CAS  Google Scholar 

  117. Modo M, Hoehn M, Bulte J (2005) Cellular MR imaging. Mol Imaging 4:1–21

    Google Scholar 

  118. Chin BB, Nakamoto Y, Bulte JW, Pittinger MF, Wahl R, Kraitchman DL (2003) 111In oxine labeled mesenchymal stem cell SPET after intravenous administration in myocardial infarction. Nucl Med Commun 24:1149–1154

    Article  PubMed  CAS  Google Scholar 

  119. Shah K, Hsich G, Breakefield XO (2004) Neural precursor cells and their role in neuro-oncology. Dev Neurosci 26:118–130

    Article  PubMed  CAS  Google Scholar 

  120. Koehne G, Doubrovin M, Doubrovina E, et al. (2003) Serial in vivo imaging of targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21:405–413

    Article  PubMed  CAS  Google Scholar 

  121. Filmont JE, Czernin J, Yap C, et al. (2003) Value of F-18 fluorodeoxyglucose positron emission tomography for predicting the clinical outcome of patients with aggressive lymphoma prior to and after autologous stem-cell transplantation. Chest 124:608–613

    Article  PubMed  Google Scholar 

  122. Becherer A, Mitterbauer M, Jaeger U, et al. (2002) Positron emission tomography with [18F]2-fluoro-d-2-deoxyglucose (FDG-PET) predicts relapse of malignant lymphoma after high-dose therapy with stem cell transplantation. Leukemia 16:260–267

    Article  PubMed  CAS  Google Scholar 

  123. Spaepen K, Stroobants S, Dupont P, et al. (2003) Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102:53–59

    Article  PubMed  CAS  Google Scholar 

  124. Cremerius U, Fabry U, Wildberger JE, et al. (2002) Pre-transplant positron emission tomography (PET) using fluorine-18-fluoro-deoxyglucose (FDG) predicts outcome in patients treated with high-dose chemotherapy and autologous stem cell transplantation for non-Hodgkin’s lymphoma. Bone Marrow Transplant 30:103–111

    Article  PubMed  CAS  Google Scholar 

  125. Brower V (2005) Search and destroy: Recent research exploits adult stem cells’ attraction to cancer. J Natl Cancer Inst 97:414–416

    Article  PubMed  Google Scholar 

  126. De Witte O, Lefranc F, Levivier M, et al. (2000) FDG-PET as a prognostic factor in high-grade astrocytoma. J Neuro-oncol 49:157–163

    Article  Google Scholar 

  127. Padma MV, Said S, Jacobs M, et al. (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neuro-oncol 64:227–237

    Article  CAS  Google Scholar 

  128. Deshmukh A, Scott JA, Palmer EL, et al. (1996) Impact of fluorodeoxyglucose positron emission tomography on the clinical management of patients with glioma. Clin Nucl Med 21:720–725

    Article  PubMed  CAS  Google Scholar 

  129. Herholz K, Heiss WD (2004) Positron emission tomography in clinical neurology. Mol Imaging Biol 6:239–269

    Article  PubMed  Google Scholar 

  130. Nariai T, Tanaka Y, Wakimoto H, et al. (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    Article  PubMed  Google Scholar 

  131. Herholz K, Kracht LW, Heiss WD (2003) Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging 13:269–271

    Article  PubMed  CAS  Google Scholar 

  132. Jacobs AH, Thomas A, Kracht LW, et al. (2005) 18F-fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958

    PubMed  CAS  Google Scholar 

  133. Popperl G, Kreth FW, Herms J, et al. (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: Is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403

    PubMed  Google Scholar 

  134. Popperl G, Goldbrunner R, Gildehaus FJ, et al. (2005) O-(2-[18F]fluoroethyl)-l-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32:1018–1025

    Article  PubMed  CAS  Google Scholar 

  135. Rachinger W, Goetz C, Popperl G, et al. (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Schaller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, B.J., Modo, M. & Buchfelder, M. Molecular Imaging of Brain Tumors: A Bridge Between Clinical and Molecular Medicine?. Mol Imaging Biol 9, 60–71 (2007). https://doi.org/10.1007/s11307-006-0069-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-006-0069-9

Key words

Navigation