Skip to main content
Log in

Functional and Anatomical Magnetic Resonance Imaging in Parkinson’s Disease

  • Review Article
  • Special Issue: Molecular Imaging in the Evaluation of Neurodegenerative Diseases
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

For the past 15 years, measurements of cerebral blood flow as an indicator of neuronal activity have been used to gain a better understanding of the neural basis of motor and cognitive deficits in Parkinson’s disease. The initial studies, using positron emission tomography, yielded results in keeping with the hypothesis that symptoms result from excessive cortical inhibition from cortico-striatal loops. However, subsequent studies with functional magnetic resonance imaging (fMRI) have shown that specific aspects of the paradigms used, such as the need to pay attention to one’s movements, have a significant impact on activation patterns, which may complicate the interpretation of results. Functional neuroimaging has also been used to investigate the causes of cognitive impairment in Parkinson’s disease. While some studies implicate dopamine loss in striatum, more recent investigations using anatomical MRI to measure cortical atrophy suggest that some cognitive deficits are attributable to direct cortical involvement by the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders [see comments]. Trends Neurosci 12:366– 375

    Article  PubMed  CAS  Google Scholar 

  3. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  CAS  Google Scholar 

  4. Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13:254–258

    Article  PubMed  CAS  Google Scholar 

  5. Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1:129–169

    Article  PubMed  CAS  Google Scholar 

  6. Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160

    Article  PubMed  CAS  Google Scholar 

  7. Wickens J, Kotter R (1995) Cellular models of reinforcement. In: Houk JC, Davis JL and Beiser DG (eds) Models of information processing in the basal ganglia. Cambridge, MA: MIT Press, pp 187–214

    Google Scholar 

  8. Whitton PS (1997) Glutamatergic control over brain dopamine release in vivo and in vitro. Neurosci Biobehav Rev 21:481–488

    Article  PubMed  CAS  Google Scholar 

  9. Raichle ME (1987) Circulatory and metabolic correlates of brain function in normal humans. In: Mountcastle VB (ed) Handbook of physiology, sect 1, vol 5: the nervous system. Bethesda: American Physiological Society, pp 643–674

    Google Scholar 

  10. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme

    Google Scholar 

  11. Worsley KJ, Liao CH, Aston J, et al. (2002) A general statistical analysis for fMRI data. Neuroimage. 15:1–15

    Article  PubMed  CAS  Google Scholar 

  12. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  13. Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357:1003–1037

    Article  PubMed  Google Scholar 

  14. Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531

    Article  PubMed  Google Scholar 

  15. Waldvogel D, van Gelderen P, Muellbacher W, Ziemann U, Immisch I, Hallett M (2000) The relative metabolic demand of inhibition and excitation. Nature 406:995–998

    Article  PubMed  CAS  Google Scholar 

  16. Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  17. Jech R, Urgosik D, Tintera J, et al. (2001) Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord 16:1126–1132

    Article  PubMed  CAS  Google Scholar 

  18. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  19. Scherfler C, Schocke MF, Seppi K, et al. (2006) Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain 129:538–542

    Article  PubMed  Google Scholar 

  20. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  21. Rascol O, Sabatini U, Chollet F, et al. (1992) Supplementary and primary sensory motor area activity in Parkinson’s disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 49:144–148

    PubMed  CAS  Google Scholar 

  22. Playford ED, Jenkins IH, Passingham, RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32:151–161

    Article  PubMed  CAS  Google Scholar 

  23. Jenkins IH, Fernandez W, Playford ED, et al. (1992) Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32:749–757

    Article  PubMed  CAS  Google Scholar 

  24. Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118:913–933

    Article  PubMed  Google Scholar 

  25. Grafton ST, Waters C, Sutton J, Lew MF, Couldwell W (1995) Pallidotomy increases activity of motor association cortex in Parkinson’s disease: a positron emission tomographic study. Ann Neurol 37:776–783

    Article  PubMed  CAS  Google Scholar 

  26. Samuel M, Ceballos Baumann AO, Turjanski N, et al. (1997) Pallidotomy in Parkinson’s disease increases supplementary motor area and prefrontal activation during performance of volitional movements An H2O PET study. Brain 120:1301–1313

    Article  PubMed  Google Scholar 

  27. Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann Neurol 42:283–291

    Article  PubMed  CAS  Google Scholar 

  28. Ceballos-Baumann AO, Boecker H, Bartenstein P, et al. (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56:997–1003

    Article  PubMed  CAS  Google Scholar 

  29. Strafella AP, Dagher A, Sadikot A (2003) Cerebral blood flow changes induced by subthalamic stimulation in Parkinson’s disease. Neurology 60:1039–1042

    PubMed  Google Scholar 

  30. Fukuda M, Mentis M, Ghilardi MF, et al. (2001) Functional correlates of pallidal stimulation for Parkinson’s disease. Ann Neurol 49:155–164

    Article  PubMed  CAS  Google Scholar 

  31. Thobois S, Dominey P, Decety J, Pollak P, Gregoire MC, Broussolle E (2000) Overactivation of primary motor cortex is asymmetrical in hemiparkinsonian patients. Neuroreport 11:785–789

    Article  PubMed  CAS  Google Scholar 

  32. Samuel M, Ceballos-Baumann AO, Blin J, et al. (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain 120:963–976

    Article  PubMed  Google Scholar 

  33. Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    Article  PubMed  CAS  Google Scholar 

  34. Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–682

    Article  PubMed  CAS  Google Scholar 

  35. Haslinger B, Erhard P, Kampfe N, et al. (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124:558–570

    Article  PubMed  CAS  Google Scholar 

  36. Hanakawa T, Fukuyama H, Katsumi Y, Honda M., Shibasaki H (1999) Enhanced lateral premotor activity during paradoxical gait in Parkinson’s disease. Ann Neurol 45:329–336

    Article  PubMed  CAS  Google Scholar 

  37. Peters S, Suchan B, Rusin J, et al. (2003) Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients. Neuroreport 14:809–812

    Article  PubMed  CAS  Google Scholar 

  38. Sabatini U, Boulanouar K, Fabre N, et al. (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123:394–403

    Article  PubMed  Google Scholar 

  39. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  40. Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C (2003) Pharmacologically modulated fMRI-cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126:451–461

    Article  PubMed  CAS  Google Scholar 

  41. Petrides M (1994) Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. In: Boller F and Grafman J (eds) Handbook of neuropsychology. Amsterdam: Elsevier, pp 59–82

    Google Scholar 

  42. Owen AM (1997) The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci 9:1329–1339

    Article  PubMed  CAS  Google Scholar 

  43. Freund HJ (1987) Abnormalities of motor behavior after cortical lesions in humans. In: Mountcastle VB and Plum F (eds) Handbook of physiology, section 1, the nervous system. Bethesda, MD: American Physiological Society, pp 768–810

    Google Scholar 

  44. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Mountcastle VB and Plum F (eds) Handbook of physiology, section 1, the nervous system. Bethesda, MD: American Physiological Society, pp 373–418

    Google Scholar 

  45. Catalan MJ, Ishii K, Honda M, Samii A, Hallett M (1999) A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain 122:483–495

    Article  PubMed  Google Scholar 

  46. Samuel M, Ceballos-Baumann AO, Boecker H, Brooks DJ (2001) Motor imagery in normal subjects and Parkinson’s disease patients: an H215O PET study. Neuroreport 12:821–828

    Article  PubMed  CAS  Google Scholar 

  47. Boecker H, Dagher A, Ceballos-Baumann AO, et al. (1998) Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET [published erratum appears in J Neurophysiol 1998 Jun; 79(6):3301]. J Neurophysiol 79:1070–1080

    PubMed  CAS  Google Scholar 

  48. Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R (2002) Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain 125:276–289

    Article  PubMed  Google Scholar 

  49. Dirnberger G, Frith CD, Jahanshahi M (2005) Executive dysfunction in Parkinson’s disease is associated with altered pallidal–frontal processing. Neuroimage 25:588–599

    Article  PubMed  Google Scholar 

  50. Schrag A, Jahanshahi M, Quinn N (2000) What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry 69:308–312

    Article  PubMed  CAS  Google Scholar 

  51. Weintraub D, Moberg PJ, Duda JE, Katz IR, Stern MB (2004) Effect of psychiatric and other nonmotor symptoms on disability in Parkinson’s disease. J Am Geriatr Soc 52:784–788

    Article  PubMed  Google Scholar 

  52. Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56:730–736

    PubMed  CAS  Google Scholar 

  53. Dubois B, Boller F, Pillon B, Agid Y (1991) Cognitive deficits in Parkinson’s disease. In: Boller F and Grafman J (eds) Handbook of neuropsychology. New York: Elsevier Science, pp 195–240

    Google Scholar 

  54. Owen AM, James M, Leigh PN, et al. (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115:1727–1751

    Article  PubMed  Google Scholar 

  55. Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related fMRI. J Neurosci 21:7733–7741

    PubMed  CAS  Google Scholar 

  56. Dagher A, Owen AM, Boecker H, Brooks DJ (1999) Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 122:1973–1987

    Article  PubMed  Google Scholar 

  57. Dagher A, Owen AM, Boecker H, Brooks DJ (2001) The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain 124:1020–1032

    Article  PubMed  CAS  Google Scholar 

  58. Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC (1998) Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 121:949–965

    Article  PubMed  Google Scholar 

  59. Bruck A, Portin R, Lindell A, et al. (2001) Positron emission tomography shows that impaired frontal lobe functioning in Parkinson’s disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett 311:81–84

    Article  PubMed  CAS  Google Scholar 

  60. Marie RM, Barre L, Dupuy B, Viader F, Defer G, Baron JC (1999) Relationships between striatal dopamine denervation and frontal executive tests in Parkinson’s disease. Neurosci Lett 260:77–80

    Article  PubMed  CAS  Google Scholar 

  61. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594

    Article  PubMed  Google Scholar 

  62. Mattay VS, Tessitore A, Callicott JH, et al. (2002) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 51:156–164

    Article  PubMed  CAS  Google Scholar 

  63. Sawaguchi T, Matsumura M, Kubota K (1990) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1385–1400

    PubMed  CAS  Google Scholar 

  64. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  PubMed  CAS  Google Scholar 

  65. Hallett M (1993) Physiology of basal ganglia disorders: an overview. Can J Neurol Sci 20:177–183

    PubMed  CAS  Google Scholar 

  66. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM (2003) Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23:6351–6356

    PubMed  CAS  Google Scholar 

  67. Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A (2004) Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci 24:702–710

    Article  PubMed  CAS  Google Scholar 

  68. Monchi O, Petrides M, Mejia-Constain B, Strafella AP (2007) Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain 130:233–244

    Article  PubMed  Google Scholar 

  69. Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 111:299–321

    Article  PubMed  Google Scholar 

  70. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    Article  PubMed  CAS  Google Scholar 

  71. Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW (2007) l-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32:180–189

    Google Scholar 

  72. Moody TD, Bookheimer SY, Vanek Z, Knowlton BJ (2004) An implicit learning task activates medial temporal lobe in patients with Parkinson’s disease. Behav Neurosci 118:438–442

    Article  PubMed  Google Scholar 

  73. Packard MG, Hirsh R, White NM (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci 9:1465–1472

    PubMed  CAS  Google Scholar 

  74. Grossman M, Cooke A, DeVita C, et al. (2003) Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology 60:775–781

    Article  PubMed  CAS  Google Scholar 

  75. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2: 685–694

    Article  PubMed  CAS  Google Scholar 

  76. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328

    Article  PubMed  CAS  Google Scholar 

  77. Asahina M, Suhara T, Shinotoh H, Inoue O, Suzuki K, Hattori T (1998) Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry 65:155–163

    Article  PubMed  CAS  Google Scholar 

  78. Kuhl DE, Minoshima S, Fessler JA, et al. (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410

    Article  PubMed  CAS  Google Scholar 

  79. Hilker R, Thomas AV, Klein JC, et al. (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722

    Article  PubMed  CAS  Google Scholar 

  80. Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA (2003) Parkinson’s disease is associated with hippocampal atrophy. Mov Disord 18:784–790

    Article  PubMed  Google Scholar 

  81. Riekkinen P Jr, Kejonen K, Laakso MP, Soininen H, Partanen K, Riekkinen M (1998) Hippocampal atrophy is related to impaired memory, but not frontal functions in non-demented Parkinson’s disease patients. Neuroreport 9:1507–1511

    Article  PubMed  Google Scholar 

  82. Nagano-Saito A, Washimi Y, Arahata Y, et al. (2005) Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 64:224–229

    PubMed  CAS  Google Scholar 

  83. Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT (2004) Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127:791–800

    Google Scholar 

  84. Summerfield C, Junque C, Tolosa E, et al. (2005) Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 62:281–285

    Article  PubMed  Google Scholar 

  85. Kassubek J, Juengling FD, Hellwig B, Spreer J, Lucking CH (2002) Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging. Neurosci Lett 323:29–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Dagher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagher, A., Nagano-Saito, A. Functional and Anatomical Magnetic Resonance Imaging in Parkinson’s Disease. Mol Imaging Biol 9, 234–242 (2007). https://doi.org/10.1007/s11307-007-0089-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0089-0

Key words

Navigation