Skip to main content
Log in

Localization of Deoxyglucose and Annexin A5 in Experimental Atheroma Correlates with Macrophage Infiltration but not Lipid Deposition in the Lesion

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to understand the relationship of lipid deposition to the macrophage content, macrophage metabolism, and apoptosis in plaque. We compared the uptake of 2-deoxy-2-fluoro-D-[14C]glucose ([14C]FDG) and [99mTc]HYNIC-annexin V ([99mTc]annexin A5) with the lesion histology in apolipoprotein E knockout (apoE−/−) mice.

Procedures

Male apoE−/− mice (n = 9) were injected with [14C]FDG and [99mTc]annexin A5. Cryostat sections of aorta samples (n = 49) were used for dual-tracer autoradiography, and regional tracer uptake levels were evaluated. Lesions were identified histologically with Movat's pentachrome (AHA lesion phenotypes), Mac-2 staining (macrophage infiltration) and Oil Red O staining (lipid deposition).

Results

The highest uptakes of [14C]FDG (3.10 ± 1.50 %ID × kilogram per square millimeter) and [99mTc]annexin A5 (0.49 ± 0.20 %ID × kilogram per square millimeter) were shown in atheromatous lesions (types III and IV). Each tracer uptake showed better correlation with macrophage infiltration than lipid deposition ([14C]FDG, r = 0.44 vs. r = 0.14; [99mTc]annexin A5, r = 0.65 vs. r = 0.48).

Conclusions

Both tracers were concentrated in type III and IV atheromatous lesions which corresponded to macrophage infiltration rather than lipid deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FDG:

2-Deoxy-2-fluoro-D-glucose

HYNIC:

Hydrazinonicotinamide

[99mTc]annexin A5:

[99mTc]HYNIC-annexin A5

apoE−/− mice:

Apolipoprotein E knockout mice

PET:

Positron emission tomography

CT:

Computed tomography

MRI:

Magnetic resonance image

TIA:

Transient ischemic attack

ARG:

Autoradiography

ROI:

Region of interest

ACS:

Acute coronary syndrome

References

  1. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  PubMed  CAS  Google Scholar 

  2. Virmani R, Burke AP, Willerson JT, Farb A, Narula J, Kolodgie FD (2007) The pathology of vulnerable plaque. In: The Vulnerable Atherosclerotic Plaque: Strategies for Diagnosis and Management. Chapter 2, 21–36

  3. Bartorelli AL, Potkin BN, Almagor Y, Keren G, Roberts WC, Leon MB (1990) Plaque characterization of atherosclerotic coronary arteries by intravascular ultrasound. Echocardiography 7:389–395

    Article  PubMed  CAS  Google Scholar 

  4. Thieme T, Wernecke KD, Meyer R et al (1996) Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 28:1–6

    Article  PubMed  CAS  Google Scholar 

  5. Cury RC, Houser SL, Furie KL et al (2006) Vulnerable plaque detection by 3.0 tesla magnetic resonance imaging. Invest Radiol 41:112–115

    Article  PubMed  Google Scholar 

  6. Estes JM, Quist WC, Lo Gerfo FW, Costello P (1998) Noninvasive characterization of plaque morphology using helical computed tomography. J Cardiovasc Surg (Torino) 39:527–534

    CAS  Google Scholar 

  7. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  8. Stoneman VE, Bennett MR (2004) Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond) 107:343–354

    Article  CAS  Google Scholar 

  9. Davies JR, Rudd JH, Weissberg PL, Narula J (2006) Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 47(8 Suppl):C57–C68

    Article  PubMed  CAS  Google Scholar 

  10. Laufer EM, Winkens MH, Narula J, Hofstra L (2009) Molecular imaging of macrophage cell death for the assessment of plaque vulnerability. Arterioscler Thromb Vasc Biol 29:1031–1038

    Article  PubMed  CAS  Google Scholar 

  11. Ogawa M, Magata Y, Kato T et al (2006) Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med 47:1845–1850

    PubMed  CAS  Google Scholar 

  12. Rudd JH, Myers KS, Bansilal S et al (2007) (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 50:892–896

    Article  PubMed  Google Scholar 

  13. Ishino S, Kuge Y, Takai N et al (2007) 99mTc-annexin A5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits. Eur J Nucl Med Mol Imaging 34:889–899

    Article  PubMed  Google Scholar 

  14. Kolodgie FD, Petrov A, Virmani R et al (2003) Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108:3134–3139

    Article  PubMed  CAS  Google Scholar 

  15. Kietselaer BL, Reutelingsperger CP, Heidendal GA et al (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350:1472–1473

    Article  PubMed  CAS  Google Scholar 

  16. Tahara N, Kai H, Nakaura H et al (2007) The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose-positron emission tomography. Eur Heart J 28:2243–2248

    Article  PubMed  CAS  Google Scholar 

  17. Ben-Haim S, Kupzov E, Tamir A, Israel O (2004) Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 45:1816–1821

    PubMed  Google Scholar 

  18. Arauz A, Hoyos L, Zenteno M, Mendoza R, Alexanderson E (2007) Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 109:409–12

    Article  PubMed  Google Scholar 

  19. Davies JR, Rudd JH, Fryer TD et al (2005) Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 36:2642–2647

    Article  PubMed  Google Scholar 

  20. Blankenberg FG, Katsikis PD, Tait JF et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95:6349–6354

    Article  PubMed  CAS  Google Scholar 

  21. Zhao Y, Kuge Y, Zhao S, Morita K, Inubushi M, Strauss HW, Blankenberg FG, Tamaki N (2007) Comparison of 99mTc-annexin A5 with 18F-FDG for the detection of atherosclerosis in ApoE−/− mice. Eur J Nucl Med Mol Imaging 34:1747–1755

    Article  PubMed  CAS  Google Scholar 

  22. Kasprzak KS, Dencker L, Larsson BS et al (1991) Isotopic and nuclear analytical techniques in biological systems: a critical survey. Pure Appl Chem 63:1269–1306

    Article  Google Scholar 

  23. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1995) Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma. I. Are inflammatory cells important? J Nucl Med 36:1854–1861

    PubMed  CAS  Google Scholar 

  24. Movat HZ (1955) Demonstration of all connective tissue elements in a single section; pentachrome stains. AMA Arch Pathol 60:289–295

    PubMed  CAS  Google Scholar 

  25. Kowala MC, Recce R, Beyer S, Gu C, Valentine M (2000) Characterization of atherosclerosis in LDL receptor knockout mice: macrophage accumulation correlates with rapid and sustained expression of aortic MCP-1/JE. Atherosclerosis 149:323–330

    Article  PubMed  CAS  Google Scholar 

  26. Stary HC, Chandler AB, Glagov S et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation 89:2462–2478

    PubMed  CAS  Google Scholar 

  27. Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation 92:1355–1374

    PubMed  CAS  Google Scholar 

  28. Ni M, Chen WQ, Zhang Y (2009) Animal models and potential mechanisms of plaque destabilisation and disruption. Heart 95:1393–1398

    Article  PubMed  CAS  Google Scholar 

  29. Jackson CL, Bennett MR, Biessen EA, Johnson JL, Krams R (2007) Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27:714–720

    Article  PubMed  CAS  Google Scholar 

  30. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97:2307–2315

    PubMed  CAS  Google Scholar 

  31. Lutgens E, de Muinck ED, Kitslaar PJ, Tordoir JH, Wellens HJ, Daemen MJ (1999) Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 41:473–479

    Article  PubMed  CAS  Google Scholar 

  32. Geng YJ, Phillips JE, Mason RP, Casscells SW (2003) Cholesterol crystallization and macrophage apoptosis: implication for atherosclerotic plaque instability and rupture. Biochem Pharmacol 66:1485–1492

    Article  PubMed  CAS  Google Scholar 

  33. Rogers IS, Nasir K, Figueroa AL et al (2010) Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 3:388–397

    Article  PubMed  Google Scholar 

  34. Silvera SS, Aidi HE, Rudd JH et al (2009) Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 207:139–143

    Article  PubMed  CAS  Google Scholar 

  35. Laitinen I, Marjamäki P, Haaparanta M et al (2006) Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. Eur J Nucl Med Mol Imaging 33:1461–1467

    Article  PubMed  CAS  Google Scholar 

  36. Rudd JH, Myers KS, Bansilal S et al (2009) Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging 2:107–115

    Article  PubMed  Google Scholar 

  37. Fayad ZA, Fuster V (2001) Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 89:305–316

    Article  PubMed  CAS  Google Scholar 

  38. Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  39. Wilensky RL, Song HK, Ferrari VA (2006) Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J Am Coll Cardiol 47(8 Suppl):C48–56

    Article  PubMed  Google Scholar 

  40. Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  PubMed  CAS  Google Scholar 

  41. Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616

    PubMed  CAS  Google Scholar 

  42. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69:377–381

    Article  PubMed  CAS  Google Scholar 

  43. Kolodgie FD, Burke AP, Farb A et al (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardio 16:285–292

    Article  CAS  Google Scholar 

  44. Johnson LL, Schofield L, Donahay T, Narula N, Narula J (2005) 99mTc-annexin V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries. J Nucl Med 46:1186–1193

    PubMed  Google Scholar 

  45. Isobe S, Tsimikas S, Zhou J et al (2006) Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. J Nucl Med 47:1497–1505

    PubMed  CAS  Google Scholar 

  46. Bessell EM, Foster AB, Westwood JH (1972) The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem J 128:199–204

    PubMed  CAS  Google Scholar 

  47. Nibbering PH, Leijh PC, Van Furth R (1987) Quantitative immunocytochemical characterization of mononuclear phagocytes. I. Monoblasts, promonocytes, monocytes, and peritoneal and alveolar macrophages. Cell Immunol 105:374–385

    Article  PubMed  CAS  Google Scholar 

  48. Nibbering PH, Leijh PC, Van Furth R (1987) Quantitative immunocytochemical characterization of mononuclear phagocytes. II. Monocytes and tissue macrophages. Immunology 62:171–176

    PubMed  CAS  Google Scholar 

  49. Bjorkerud S, Bjorkerud B (1996) Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 149:367–380

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology, the Japanese government. This research was also partially supported by a Grant-in-Aid for General Scientific Research from the Japan Society for the Promotion of Science. The authors would like to thank the staff of the Department of Nuclear Medicine and Central Institute of Isotope Science, Hokkaido University and the Facility of Radiology, Hokkaido University Medical Hospital for supporting this work. We also thank the NCI-Frederick Cancer Research and Development Center for providing annexin A5.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kuge.

Additional information

Significance:

In this study we compared the lesion distribution of [99mTc]annexin A5 (marker of ongoing apoptosis) and [14C]FDG (marker of the increased metabolism of inflammatory cells) with lesion histology in atherosclerotic plaques of apoE−/− mice. This data clarified the pathophysiologic significance of molecular imaging using [99mTc]annexin A5 and [14C]FDG, indicated the potential of the two probes on unstable plaque detection, and suggested the reason why discrepancy may be observed between [18F]FDG imaging and other diagnostic imaging or clinical outcomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Zhao, S., Kuge, Y. et al. Localization of Deoxyglucose and Annexin A5 in Experimental Atheroma Correlates with Macrophage Infiltration but not Lipid Deposition in the Lesion. Mol Imaging Biol 13, 712–720 (2011). https://doi.org/10.1007/s11307-010-0389-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0389-7

Key words

Navigation