Skip to main content

Advertisement

Log in

MRI of ICAM-1 Upregulation After Stroke: the Importance of Choosing the Appropriate Target-Specific Particulate Contrast Agent

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Magnetic resonance imaging (MRI) with targeted contrast agents provides a promising means for diagnosis and treatment monitoring after cerebrovascular injury. Our goal was to demonstrate the feasibility of this approach to detect the neuroinflammatory biomarker intercellular adhesion molecule-1 (ICAM-1) after stroke and to establish a most efficient imaging procedure.

Procedures

We compared two types of ICAM-1-functionalized contrast agent: T 1-shortening gadolinium chelate-containing liposomes and T 2 (*)-shortening micron-sized iron oxide particles (MPIO). Binding efficacy and MRI contrast effects were tested in cell cultures and a mouse stroke model.

Results

Both ICAM-1-targeted agents bound effectively to activated cerebrovascular cells in vitro, generating significant MRI contrast-enhancing effects. Direct in vivo MRI-based detection after stroke was only achieved with ICAM-1-targeted MPIO, although both contrast agents showed similar target-specific vascular accumulation.

Conclusions

Our study demonstrates the potential of in vivo MRI of post-stroke ICAM-1 upregulation and signifies target-specific MPIO as most suitable contrast agent for molecular MRI of cerebrovascular inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  PubMed  CAS  Google Scholar 

  2. Thakur M, Lentle BC (2005) Report of a summit on molecular imaging. Radiology 236:753–755

    Article  PubMed  Google Scholar 

  3. Gupta H, Weissleder R (1996) Targeted contrast agents in MR imaging. Magn Reson Imaging Clin N Am 4:171–184

    PubMed  CAS  Google Scholar 

  4. Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental models of brain disorders. J Cereb Blood Flow Metab 23:1383–1402

    Article  PubMed  Google Scholar 

  5. Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609

    Article  PubMed  CAS  Google Scholar 

  6. Deddens LH, Van Tilborg GA, Mulder WJ, De Vries HE, Dijkhuizen RM (2012) Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies. Cerebrovasc Dis 33:392–402

    Article  PubMed  CAS  Google Scholar 

  7. Muller RN, Roch A, Colet J-M, Ouakssim A, Gillis P (2001) Particulate magnetic contrast agents. In: Merbach AE, Tóth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York, pp 417–435

  8. Wijagkanalan W, Kawakami S, Hashida M (2011) Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm Res 28:1500–1519

    Article  PubMed  CAS  Google Scholar 

  9. Mulder WJ, Strijkers GJ, Van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    Article  PubMed  CAS  Google Scholar 

  10. Laurent S, Boutry S, Mahieu I, Vander Elst L, Muller RN (2009) Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr Med Chem 16:4712–4727

    Article  PubMed  CAS  Google Scholar 

  11. Barber PA, Foniok T, Kirk D et al (2004) MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol 56:116–120

    Article  PubMed  CAS  Google Scholar 

  12. Jin AY, Tuor UI, Rushforth D et al (2009) Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging 4:305–311

    Article  PubMed  CAS  Google Scholar 

  13. Van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A 106:18–23

    Article  PubMed  Google Scholar 

  14. Hoyte LC, Brooks KJ, Nagel S et al (2010) Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1178–1187

    Article  PubMed  CAS  Google Scholar 

  15. Breckwoldt MO, Chen JW, Stangenberg L et al (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 105:18584–18589

    Article  PubMed  CAS  Google Scholar 

  16. Zhang RL, Chopp M, Zaloga C et al (1995) The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Res 682:182–188

    Article  PubMed  CAS  Google Scholar 

  17. Shyu KG, Chang H, Lin CC (1997) Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. J Neurol 244:90–93

    Article  PubMed  CAS  Google Scholar 

  18. Everts M, Koning GA, Kok RJ et al (2003) In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm Res 20:64–72

    Article  PubMed  CAS  Google Scholar 

  19. Koning GA, Morselt HW, Velinova MJ et al (1999) Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine from immunoliposomes to colon cancer cells. Biochim Biophys Acta 1420:153–167

    Article  PubMed  CAS  Google Scholar 

  20. Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  PubMed  CAS  Google Scholar 

  21. Wagner EF, Risau W (1994) Oncogenes in the study of endothelial cell growth and differentiation. Semin Cancer Biol 5:137–145

    PubMed  CAS  Google Scholar 

  22. Perls M (1867) Nachweis von Eisenoxyd in gewissen Pigmenten. Virchows Archiv 39:42–48

    Article  Google Scholar 

  23. Oude Engberink RD, Van der Pol SM, Dopp EA, De Vries HE, Blezer EL (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474

    Article  PubMed  Google Scholar 

  24. Hata R, Mies G, Wiessner C et al (1998) A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 18:367–375

    Article  PubMed  CAS  Google Scholar 

  25. Bouts MJ, Tiebosch IA, Zwartbol R, Hoogveld E, Wu O, Dijkhuizen RM (2011) Early prediction of salvageable tissue with multiparametric MRI-based algorithms after experimental ischemic stroke [abstract]. Proc Intl Soc Mag Reson Med 19:2141P

    Google Scholar 

  26. Zhu Y, Ling Y, Zhong J, Liu X, Wei K, Huang S (2012) Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide. Acta Radiol 53:812–819

    Article  PubMed  Google Scholar 

  27. Serres S, Mardiguian S, Campbell SJ, et al (2011) VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J 25:4415–4422

    Google Scholar 

  28. Montagne A, Gauberti M, Macrez R et al (2012) Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. NeuroImage 63:760–770

    Article  PubMed  Google Scholar 

  29. Yang Y, Yanasak N, Schumacher A, Hu TC (2010) Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles. Magn Reson Med 63:33–40

    PubMed  CAS  Google Scholar 

  30. Ye Q, Wu YL, Foley LM et al (2008) Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 118:149–156

    Article  PubMed  Google Scholar 

  31. Vandeputte C, Thomas D, Dresselaers T et al (2011) Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol 13:663–671

    Article  PubMed  Google Scholar 

  32. Mulder WJ, Strijkers GJ, Habets JW et al (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19:2008–2010

    PubMed  CAS  Google Scholar 

  33. Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KC, Steinman L (2000) ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 104:1–9

    Article  PubMed  CAS  Google Scholar 

  34. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–743

    PubMed  CAS  Google Scholar 

  35. Woodle MC, Matthay KK, Newman MS et al (1992) Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochim Biophys Acta 1105:193–200

    Article  PubMed  CAS  Google Scholar 

  36. Van Tilborg GA, Mulder WJ, Van der Schaft DW et al (2008) Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia 10:1459–1469

    PubMed  Google Scholar 

  37. Paulis LE, Jacobs I, Van den Akker NM, et al. (2011) In vivo molecular MRI of ICAM-1 expression in murine cardiac ischemia/reperfusion using a liposomal nanoparticle [abstract]. Proc Intl Soc Mag Reson Med 19:1660P

    Google Scholar 

  38. Paulis LE, Jacobs I, van de Akker N et al (2012) Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. J Nanobiotechnology 10:25

    Article  PubMed  CAS  Google Scholar 

  39. Abra RM, Hunt CA (1981) Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim Biophys Acta 666:493–503

    Article  PubMed  CAS  Google Scholar 

  40. Van Tilborg GA, Strijkers GJ, Pouget EM et al (2008) Kinetics of avidin-induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magn Reson Med 60:1444–1456

    Article  PubMed  Google Scholar 

  41. McAteer MA, Sibson NR, von Zur MC et al (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258

    Article  PubMed  CAS  Google Scholar 

  42. Kok MB, Hak S, Mulder WJ, Van der Schaft DW, Strijkers GJ, Nicolay K (2009) Cellular compartmentalization of internalized paramagnetic liposomes strongly influences both T1 and T2 relaxivity. Magn Reson Med 61:1022–1032

    Article  PubMed  CAS  Google Scholar 

  43. Mastrobattista E, Storm G, van Bloois L et al (1999) Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells. Biochim Biophys Acta 1419:353–363

    Article  PubMed  CAS  Google Scholar 

  44. Van de Stolpe A, Van der Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med (Berl) 74:13–33

    Article  Google Scholar 

  45. Zhou W, Liesz A, Bauer H et al (2012) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23:34–44

    Article  PubMed  Google Scholar 

  46. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33

    Article  PubMed  Google Scholar 

  47. Nkansah MK, Thakral D, Shapiro EM (2011) Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking. Magn Reson Med 65:1776–1785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the Netherlands Organization for Scientific Research (NWO; VIDI 917.76.347) and the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreements no. 201024 and no. 202213 (European Stroke Network).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick M. Dijkhuizen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deddens, L.H., van Tilborg, G.A.F., van der Toorn, A. et al. MRI of ICAM-1 Upregulation After Stroke: the Importance of Choosing the Appropriate Target-Specific Particulate Contrast Agent. Mol Imaging Biol 15, 411–422 (2013). https://doi.org/10.1007/s11307-013-0617-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0617-z

Key words

Navigation