Skip to main content

Advertisement

Log in

Evaluation of 89Zr-rituximab Tracer by Cerenkov Luminescence Imaging and Correlation with PET in a Humanized Transgenic Mouse Model to Image NHL

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This research aimed to study the use of Cerenkov luminescence imaging (CLI) for non-Hodgkin’s lymphoma (NHL) using 89Zr-rituximab positron emission tomography (PET) tracer with a humanized transgenic mouse model that expresses human CD20 and the correlation of CLI with PET.

Procedures

Zr-rituximab (2.6 MBq) was tail vein-injected into transgenic mice that express the human CD20 on their B cells (huCD20TM). One group (n = 3) received 2 mg/kg pre-dose (blocking) of cold rituximab 2 h prior to tracer; a second group (n = 3) had no pre-dose (non-blocking). CLI was performed using a cooled charge-coupled device optical imager. We also performed PET imaging and ex vivo studies in order to confirm the in vivo CLI results. At each time point (4, 24, 48, 72, and 96 h), two groups of mice were imaged in vivo and ex vivo with CLI and PET, and at 96 h, organs were measured by gamma counter.

Results

huCD20 transgenic mice injected with 89Zr-rituximab demonstrated a high-contrast CLI image compared to mice blocked with a cold dose. At various time points of 4–96 h post-radiotracer injection, the in vivo CLI signal intensity showed specific uptake in the spleen where B cells reside and, hence, the huCD20 biomarker is present at very high levels. The time–activity curve of dose decay-corrected CLI intensity and percent injected dose per gram of tissue of PET uptake in the spleen were increased over the time period (4–96 h). At 96 h, the 89Zr-rituximab uptake ratio (non-blocking vs blocking) counted (mean ± standard deviation) for the spleen was 1.5 ± 0.6 for CLI and 1.9 ± 0.3 for PET. Furthermore, spleen uptake measurements (non-blocking and blocking of all time points) of CLI vs PET showed good correlation (R 2 = 0.85 and slope = 0.576), which also confirmed the corresponding correlations parameter value (R 2 = 0.834 and slope = 0.47) obtained for ex vivo measurements.

Conclusions

CLI and PET of huCD20 transgenic mice injected with 89Zr-rituximab demonstrated that the tracer was able to target huCD20-expressing B cells. The in vivo and ex vivo tracer uptake corresponding to the CLI radiance intensity from the spleen is in good agreement with PET. In this report, we have validated the use of CLI with PET for NHL imaging in huCD20TM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cerenkov PA (1934) Visible emission of clean liquids by action of γ-radiation. Comptes Rendus Doklady Akademii Nauk SSSR 2:3

    Google Scholar 

  2. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54:N355–365

    Article  PubMed  CAS  Google Scholar 

  3. Liu H, Ren G, Miao Z et al (2010) Molecular optical imaging with radioactive probes. PLoS One 5:e9470

    Article  PubMed  Google Scholar 

  4. Xu Y, Liu H, Cheng Z (2011) Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 52:2009–2018

    Google Scholar 

  5. Berger SL (1984) The use of Cerenkov radiation for monitoring reactions performed in minute volumes: examples from recombinant DNA technology. Anal Biochem 136:515–519

    Article  PubMed  CAS  Google Scholar 

  6. Hansen BS (1980) An improved method for assaying pyrophosphate exchange measuring Cerenkov radiation. Anal Biochem 109:12–17

    Article  PubMed  CAS  Google Scholar 

  7. Plesums J, Bunch WH (1971) Measurement of phosphorus following 32 P Cerenkov counting. Anal Biochem 42:360–362

    Article  PubMed  CAS  Google Scholar 

  8. Cho JS, Taschereau R, Olma S et al (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 54:6757–6771

    Article  PubMed  CAS  Google Scholar 

  9. Spinelli AE, D'Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2010) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55:483–495

    Article  PubMed  Google Scholar 

  10. Liu H, Ren G, Liu S et al (2010) Optical imaging of reporter gene expression using a positron-emission-tomography probe. J Biomed Opt 15:060505

    Article  PubMed  Google Scholar 

  11. Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z (2012) Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 53:312–317

    CAS  Google Scholar 

  12. Ruggiero A, Holland JP, Lewis JS, Grimm J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51:1123–1130

    Article  PubMed  CAS  Google Scholar 

  13. Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z (2010) Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 6:1087–1091

    Article  PubMed  CAS  Google Scholar 

  14. Natarajan A, Gowrishankar G, Nielsen CH et al (2012) Positron emission tomography of (64)Cu-DOTA-rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol Imaging Biol 14:608–616

    Article  PubMed  Google Scholar 

  15. Park JC, An GI, Park SI et al (2011) Luminescence imaging using radionuclides: a potential application in molecular imaging. Nucl Med Biol 38:321–329

    Article  PubMed  Google Scholar 

  16. Holland JP, Normand G, Ruggiero A, Lewis JS, Grimm J (2011) Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging 10(177–186):1–3

    Google Scholar 

  17. Grimm J (2012) Non-invasive Cerenkov luminescence imaging of lymphoma, leukemia and metastatic lymph nodes. ClinicalTrials.gov Identifier: NCT01664936

  18. Natarajan A, Habte F, Gambhir SS (2012) Development of a novel long-lived immunoPET tracer for monitoring lymphoma therapy in a humanized transgenic mouse model. Bioconjug Chem (in press)

  19. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77–89

    Article  PubMed  CAS  Google Scholar 

  20. Nayak TK, Brechbiel MW (2009) Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 20:825–841

    Article  PubMed  CAS  Google Scholar 

  21. Gong Q, Ou Q, Ye S et al (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174:817–826

    PubMed  CAS  Google Scholar 

  22. Irmler IM, Opfermann T, Gebhardt P et al (2010) In vivo molecular imaging of experimental joint inflammation by combined (18)F-FDG positron emission tomography and computed tomography. Arthritis Res Ther 12:R203

    Article  PubMed  Google Scholar 

  23. Dijkers EC, Kosterink JG, Rademaker AP et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J nucl med off publi Soc Nucl Med 50:974–981

    CAS  Google Scholar 

  24. Holland JP, Caldas-Lopes E, Divilov V et al (2010) Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One 5:e8859

    Article  PubMed  Google Scholar 

  25. Perk LR, Visser OJ, Stigter-van Walsum M et al (2006) Preparation and evaluation of (89)Zr-zevalin for monitoring of (90)Y-zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337–1345

    Article  PubMed  CAS  Google Scholar 

  26. Verel I, Visser GW, Boellaard R et al (2003) Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J nucl med off publi Soc Nucl Med 44:1663–1670

    CAS  Google Scholar 

  27. Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR (2011) In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Transact A Math Phys Eng Sci 369:4605–4619

    Article  CAS  Google Scholar 

  28. Liu H, Carpenter CM, Jiang H et al (2012) Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med 53:1579–1584

    Article  PubMed  Google Scholar 

  29. Kothapalli SR, Liu H, Liao JC, Cheng Z, Gambhir SS (2012) Endoscopic imaging of Cerenkov luminescence. Biomed Opt Express 3:1215–1225

    Article  PubMed  CAS  Google Scholar 

  30. Hu ZH, Liang JM, Yang WD et al (2010) Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express 18:24441–24450

    Article  PubMed  CAS  Google Scholar 

  31. Li CQ, Mitchell GS, Cherry SR (2010) Cerenkov luminescence tomography for small-animal imaging. Opt Lett 35:1109–1111

    Article  PubMed  Google Scholar 

  32. Robertson R, Germanos MS, Manfredi MG, Smith PG, Silva MD (2011) Multimodal imaging with (18)F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model. J nucl med off publi Soc Nucl Med 52:1764–1769

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Small Animal Imaging Core, the Quantitation and Visualization Core, Reyhan Kader, Dr. Timothy Doyle, and the National Cancer Institute grant support ICMIC P50CA114747 (SSG). No other potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Sam Gambhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natarajan, A., Habte, F., Liu, H. et al. Evaluation of 89Zr-rituximab Tracer by Cerenkov Luminescence Imaging and Correlation with PET in a Humanized Transgenic Mouse Model to Image NHL. Mol Imaging Biol 15, 468–475 (2013). https://doi.org/10.1007/s11307-013-0624-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0624-0

Key words

Navigation