Skip to main content
Log in

Accurate PET/MR Quantification Using Time of Flight MLAA Image Reconstruction

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Quantification of positron emission tomography/magnetic resonance imaging (PET/MRI) studies is hampered by inaccurate MR-based attenuation correction (MR-AC). To date, most studies on MR-AC have been performed using PET/MR systems without time of flight (TOF). Maximum likelihood reconstruction of attenuation and activity (MLAA), however, has the potential to improve MR-AC by exploiting TOF. The purpose of this study is to assess the impact of MR-AC on PET image quantification for TOF-PET/MR systems and to evaluate PET accuracy when using TOF in combination with MLAA (TOF-MLAA).

Procedures

Simulations were designed to evaluate (1) the impact of MR-AC on PET quantification for different TOF windows (667, 500, 333 and 167 ps) and (2) use of TOF-MLAA for improving PET quantification. TOF-ordered subset expectation maximisation (OSEM) and TOF-MLAA reconstructions using MR-AC were compared with those obtained using TOF-OSEM with computed tomography-based AC (CT-AC).

Results

OSEM reconstructions without TOF showed a negative MR-AC-induced bias of −50 % in the bone. TOF-OSEM was able to reduce this bias down to −15 %, with more accurate results for better TOF. TOF-MLAA was able to reduce the bias to within 5 % but at the cost of a ∼40 % increase in image variance.

Conclusions

TOF-MLAA can improve quantitative PET accuracy of PET/MR studies. Further improvements are anticipated with improving TOF performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Delso G, Furst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922

    Article  PubMed  Google Scholar 

  2. Zaidi H, Ojha N, Morich M et al (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56:3091–3106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Beyer T, Pichler B (2009) A decade of combined imaging: from a PET attached to a CT to a PET inside an MR. Eur J Nucl Med Mol Imaging 36(Suppl 1):S1–S2

    Article  PubMed  Google Scholar 

  4. Herzog H, van den Hoff J (2012) Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med Mol Imaging 56:247–267

    CAS  PubMed  Google Scholar 

  5. Herzog H (2012) PET/MRI: challenges, solutions and perspectives. Z Med Phys 22:281–298

    Article  PubMed  Google Scholar 

  6. Maniawski P (2011) PET/MR: the molecular imaging dream team. Nucl Med Rev Cent East Eur 14:47–50

    Article  PubMed  Google Scholar 

  7. Pichler BJ, Kolb A, Nagele T, Schlemmer HP (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51:333–336

    Article  PubMed  Google Scholar 

  8. Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ (2010) Combined PET/MR imaging–technology and applications. Technol Cancer Res Treat 9:5–20

    CAS  PubMed  Google Scholar 

  9. Pichler BJ, Judenhofer MS, Wehrl HF (2008) PET/MRI hybrid imaging: devices and initial results. Eur Radiol 18:1077–1086

    Article  PubMed  Google Scholar 

  10. Delso G, Martinez-Moller A, Bundschuh RA et al (2010) Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol 55:4361–4374

    Article  CAS  PubMed  Google Scholar 

  11. Delso G, Martinez-Moller A, Bundschuh RA et al (2010) The effect of limited MR field of view in MR/PET attenuation correction. Med Phys 37:2804–2812

    Article  PubMed  Google Scholar 

  12. Hofmann M, Pichler B, Scholkopf B, Beyer T (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S104

    Article  PubMed  Google Scholar 

  13. Keller SH, Holm S, Hansen AE et al (2013) Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI. Magma 26:173–181

    Article  PubMed  Google Scholar 

  14. Andersen FL, Ladefoged CN, Beyer T et al (2013) Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 84:206–216

    Article  PubMed  Google Scholar 

  15. Berker Y, Franke J, Salomon A et al (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53:796–804

    Article  PubMed  Google Scholar 

  16. Schulz V, Torres-Espallardo I, Renisch S et al (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38:138–152

    Article  CAS  PubMed  Google Scholar 

  17. Paulus DH, Braun H, Aklan B, Quick HH (2012) Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils. Med Phys 39:4306–4315

    Article  PubMed  Google Scholar 

  18. Wollenweber SD, Delso G, Deller T et al (2013) Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging. Magma (Epub ahead of print)

  19. Hofmann M, Bezrukov I, Mantlik F et al (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399

    Article  PubMed  Google Scholar 

  20. Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  21. Keereman V, Fierens Y, Broux T et al (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51:812–818

    Article  PubMed  Google Scholar 

  22. Rezaei A, Defrise M, Bal G et al (2012) Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 31:2224–2233

    Article  PubMed  Google Scholar 

  23. Nuyts J, Bal G, Kehren F et al (2013) Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging 32:237–246

    Article  PubMed  Google Scholar 

  24. Nuyts J, Dupont P, Stroobants S et al (1999) Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging 18:393–403

    Article  CAS  PubMed  Google Scholar 

  25. Salomon A, Goedicke A, Schweizer B et al (2011) Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging 30:804–813

    Article  PubMed  Google Scholar 

  26. Defrise M, Rezaei A, Nuyts J (2012) Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 57:885–899

    Article  PubMed  Google Scholar 

  27. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 45:1519–1527

    PubMed  Google Scholar 

  28. Cheebsumon P, Yaqub M, van Velden FH et al (2011) Impact of [18F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 38:2136–2144

    Article  PubMed Central  PubMed  Google Scholar 

  29. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H (2013) MRI for attenuation correction in PET: methods and challenges. Magma 26:99–113

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bezrukov I, Mantlik F, Schmidt H et al (2013) MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med 43:45–59

    Article  PubMed  Google Scholar 

  31. Martinez-Moller A, Nekolla SG (2012) Attenuation correction for PET/MR: problems, novel approaches and practical solutions. Z Med Phys 22:299–310

    Article  PubMed  Google Scholar 

  32. Eiber M, Martinez-Moller A, Souvatzoglou M et al (2011) Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 38:1691–1701

    Article  PubMed  Google Scholar 

  33. Beyer T, Weigert M, Quick HH et al (2008) MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 35:1142–1146

    Article  PubMed  Google Scholar 

  34. Akbarzadeh A, Ay MR, Ahmadian A et al (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27:152–162

    Article  CAS  PubMed  Google Scholar 

  35. Catana C, van der Kouwe A, Benner T et al (2010) Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 51:1431–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors have a research collaboration with Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Boellaard.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boellaard, R., Hofman, M.B.M., Hoekstra, O.S. et al. Accurate PET/MR Quantification Using Time of Flight MLAA Image Reconstruction. Mol Imaging Biol 16, 469–477 (2014). https://doi.org/10.1007/s11307-013-0716-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0716-x

Key words

Navigation