Skip to main content
Log in

Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here

Summary Report of the 4th International Workshop on PET/MR Imaging; February 23–27, 2015, Tübingen, Germany

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

This paper summarises key themes and discussions from the 4th international workshop dedicated to the advancement of the technical, scientific and clinical applications of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) systems that was held in Tübingen, Germany, from February 23 to 27, 2015. Specifically, we summarise the three days of invited presentations from active researchers in this and associated fields augmented by round table discussions and dialogue boards with specific topics. These include the use of PET/MRI in cardiovascular disease, paediatrics, oncology, neurology and multi-parametric imaging, the latter of which was suggested as a key promoting factor for the wider adoption of integrated PET/MRI. Discussions throughout the workshop and a poll taken on the final day demonstrated that attendees felt more strongly that PET/MRI has further advanced in both technical versatility and acceptance by clinical and research-driven users from the status quo of last year. Still, with only minimal evidence of progress made in exploiting the true complementary nature of the PET and MRI-based information, PET/MRI is still yet to achieve its potential. In that regard, the conclusion of last year’s meeting “the real work has just started” still holds true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bailey DL, Barthel H, Beyer T et al (2013) Summary report of the first international workshop on PET/MR imaging, March 19–23, 2012, Tubingen, Germany. Mol Imaging Biol 15:361–371

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bailey DL, Barthel H, Beuthin-Baumann B et al (2014) Combined PET/MR: where are we now? Summary report of the second international workshop on PET/MR imaging April 8–12, 2013, Tubingen, Germany. Mol Imaging Biol 16:295–310

    PubMed  Google Scholar 

  3. Bailey DL, Antoch G, Bartenstein P (2015) Combined PET/MR: the real work has just started. Summary report of the third international workshop on PET/MR imaging, February 17–21, 2014, Tubingen, Germany. Mol Imaging Biol 17:297–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48(Suppl 1):78S–88S

    CAS  PubMed  Google Scholar 

  5. Botnar RM, Ebersberger H, Noerenberg D et al (2015) Molecular imaging in cardiovascular diseases. RoFo 187:92–101

  6. Osborn EA, Jaffer FA (2013) The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imag 6:1327–1341

    Article  Google Scholar 

  7. Magnoni M, Ammirati E, Camici PG (2015) Non-invasive molecular imaging of vulnerable atherosclerotic plaques. J Cardiol 65:261–269

    Article  PubMed  Google Scholar 

  8. Wildgruber M, Swirski FK, Zernecke A (2013) Molecular imaging of inflammation in atherosclerosis. Theranostics 3:865–884

    Article  PubMed Central  PubMed  Google Scholar 

  9. Nensa F, Poeppel TD, Beiderwellen K et al (2013) Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology 268:366–373

    Article  PubMed  Google Scholar 

  10. Nensa F, Poeppel TD, Krings P, Schlosser T (2014) Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J 35:2173

    Article  PubMed  Google Scholar 

  11. Nensa F, Tezgah E, Poeppel TD et al (2015) Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study. J Nucl Med 56:255–260

    Article  CAS  PubMed  Google Scholar 

  12. Ripa RS, Knudsen A, Hag AM et al (2013) Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imag 3:361–371

    Google Scholar 

  13. Ripa RS, Kjaer A, Hesse B (2014) Non-invasive imaging for subclinical coronary atherosclerosis in patients with peripheral artery disease. Curr Atheroscler Rep 16:415

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ripa RS, Kjaer A (2015) Imaging atherosclerosis with hybrid positron emission tomography/magnetic resonance imaging. BioMed Res Int 2015:914516

    Article  PubMed Central  PubMed  Google Scholar 

  15. Pedersen SF, Hag AM, Klausen TL et al (2014) Positron emission tomography of the vulnerable atherosclerotic plaque in man—a contemporary review. Clin Physiol Funct Imag 34:413–425

    Article  Google Scholar 

  16. Bulluck H, Maestrini V, Rosmini S et al (2015) Myocardial T1 mapping. Circ J 79:487–494

    Article  PubMed  Google Scholar 

  17. Pica S, Sado DM, Maestrini V et al (2014) Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Res 16:99

    Article  Google Scholar 

  18. Kellman P, Hansen MS (2014) T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Res 16:2

    Article  Google Scholar 

  19. Kolh P, Windecker S (2014) ESC/EACTS myocardial revascularization guidelines 2014. Eur Heart J 35:3235–3236

    Article  PubMed  Google Scholar 

  20. Task Force Members, Montalescot G, Sechtem U et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Article  Google Scholar 

  21. Schafers M, Schober O, Hermann S (2010) Matrix-metalloproteinases as imaging targets for inflammatory activity in atherosclerotic plaques. J Nucl Med 51:663–666

    Article  PubMed  Google Scholar 

  22. Petibon Y, Ouyang J, Zhu X et al (2013) Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study. Phys Med Biol 58:2085–2102

    Article  CAS  PubMed  Google Scholar 

  23. Fieseler M, Gigengack F, Jiang X, Schafers KP (2014) Motion correction of whole-body PET data with a joint PET-MRI registration functional. BioMed Eng Online 13(1):S2

    Article  PubMed Central  PubMed  Google Scholar 

  24. Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE (2015) Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286

    Article  CAS  PubMed  Google Scholar 

  25. Stauss J, Franzius C, Pfluger T et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35:1581–1588

    Article  CAS  PubMed  Google Scholar 

  26. Gelfand MJ, Parisi MT, Treves S (2011) Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 52:318–322

    Article  PubMed  Google Scholar 

  27. Lassmann M, Biassoni L, Monsieurs M et al (2008) The new EANM paediatric dosage card: additional notes with respect to F-18. Eur J Nucl Med Mol Imaging 35:1666–1668

    Article  CAS  PubMed  Google Scholar 

  28. Lassmann M, Treves ST (2014) Pediatric Radiopharmaceutical Administration: harmonization of the 2007 EANM Paediatric Dosage Card (version 1.5.2008) and the 2010 North American Consensus guideline. Eur J Nucl Med Mol Imaging 41:1636

    Article  PubMed  Google Scholar 

  29. Purz S, Sabri O, Viehweger A et al (2014) Potential pediatric applications of PET/MR. J Nucl Med 55:32S–39S

    Article  CAS  PubMed  Google Scholar 

  30. Schafer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231

    Article  PubMed  Google Scholar 

  31. Oehmigen M, Ziegler S, Jakoby BW et al (2014) Radiotracer dose reduction in integrated PET/MR: implications from National Electrical Manufacturers Association Phantom Studies. J Nucl Med 55:1361–1367

    Article  PubMed  Google Scholar 

  32. Kalender WA (2014) Dose in X-ray computed tomography. Phys Med Biol 59:R129–R150

    Article  PubMed  Google Scholar 

  33. Heusch P, Buchbender C, Beiderwellen K et al (2013) Standardized uptake values for [18F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 82:870–876

    Article  PubMed  Google Scholar 

  34. Kershah S, Partovi S, Traughber BJ et al (2013) Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in an oncology patient population. Mol Imaging Biol 15:776–785

    Article  PubMed  Google Scholar 

  35. Kim JH, Lee JS, Song IC, Lee DS (2012) Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med 53:1878–1882

    Article  PubMed  Google Scholar 

  36. Hicks RJ, Lau EW (2009) PET/MRI: a different spin from under the rim. Eur J Nucl Med Mol Imaging 36(Suppl 1):S10–S14

    Article  PubMed  Google Scholar 

  37. Eder M, Neels O, Muller M et al (2014) Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceutical 7:779–796

    CAS  Google Scholar 

  38. Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42:197–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hartenbach M, Hartenbach S, Bechtloff W et al (2014) Combined PET/MRI improves diagnostic accuracy in patients with prostate cancer: a prospective diagnostic trial. Clin Canc Res 20:3244–3253

    Article  CAS  Google Scholar 

  40. Drzezga A, Barthel H, Minoshima S, Sabri O (2014) Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med 55:47S–55S

    Article  PubMed  Google Scholar 

  41. Barthel H, Gertz HJ, Dresel S et al (2011) Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10:424–435

    Article  CAS  PubMed  Google Scholar 

  42. Dukart J, Mueller K, Horstmann A et al (2011) Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One 6:e18111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kudomi N, Maeda Y, Sasakawa Y et al (2013) Imaging of the appearance time of cerebral blood using [15O]H2O PET for the computation of correct CBF. EJNMMI Res 3:41

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kudomi N, Hirano Y, Koshino K et al (2013) Rapid quantitative CBF and CMRO(2) measurements from a single PET scan with sequential administration of dual (15)O-labeled tracers. J Cereb Blood Flow Metab 33:440–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Iguchi S, Hori Y, Moriguchi T et al (2013) Verification of a semi-automated MRI-guided technique for non-invasive determination of the arterial input function in 15O-labeled gaseous PET. Nucl Instr Methods Phys Res A 702:111–113

    Article  CAS  Google Scholar 

  46. Martinez-Moller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  47. Izquierdo-Garcia D, Hansen AE, Forster S et al (2014) An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med 55:1825–1830

    Article  PubMed Central  PubMed  Google Scholar 

  48. Delso G, Carl M, Wiesinger F et al (2014) Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med 55:780–785

    Article  PubMed  Google Scholar 

  49. Andersen FL, Ladefoged CN, Beyer T et al (2014) Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. NeuroImage 84:206–216

    Article  PubMed  Google Scholar 

  50. Riedl V, Bienkowska K, Strobel C et al (2014) Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. J Neurosci 34:6260–6266

    Article  CAS  PubMed  Google Scholar 

  51. Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1189

    Article  CAS  PubMed  Google Scholar 

  52. Delso G, Wiesinger F, Sacolick LI et al (2015) Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull. J Nucl Med 56:417–422

    Article  PubMed  Google Scholar 

  53. Hofmann M, Steinke F, Scheel V et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  54. Catana C, Benner T, van der Kouwe A et al (2011) MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med 52:154–161

    Article  PubMed Central  PubMed  Google Scholar 

  55. Blumhagen JO, Braun H, Ladebeck R et al (2014) Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging. Med Phys 41:022303

    Article  PubMed  Google Scholar 

  56. Quick HH (2014) Integrated PET/MR. J Magn Res Imag 39:243–258

    Article  Google Scholar 

  57. Paulus DH, Thorwath D, Schmidt H, Quick HH (2014) Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning. Med Phys 41:072505

    Article  PubMed  Google Scholar 

  58. Wehrl HF, Martirosian P, Schick F, Reischl G, Pichler BJ (2014) Assessment of rodent brain activity using combined [15O]H2O-PET and BOLD-fMRI. NeuroImage 89:271–279

    Article  PubMed  Google Scholar 

  59. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Afshar-Oromieh A, Haberkorn U, Schlemmer HP et al (2014) Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging 41:887–897

    Article  CAS  PubMed  Google Scholar 

  61. Sander CY, Hooker JM, Catana C et al (2013) Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci 110:11169–11174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. New Engl J Med 370:322–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Becker H (2009) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9:2119–2122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all the participants for their active contribution at the 4th Tübingen Workshop on PET/MRI and for the lively discussions. In particular, we would like to acknowledge R. Boellard (Department of Radiology & Nuclear Medicine, VU University Medical Center Amsterdam, The Netherlands), F. Fahey (Boston Children’s Hospital, Department of Radiology, Boston, USA), D.-M. Koh (Functional Imaging, Royal Marsden Hospital, Surrey, UK) and B. R. Rosen (Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard University Medical School, Charlestown, USA), as well as C. Claussen, S. Bisdas, C. Brendle, U. Ernemann, S. Gatidis, A. Kolb, J. Kupferschläger, J. Machann, C. Pfannenberg, G. Reischl, F. Schick, H. Schmidt, C. Schraml, S.-C. Schüle and N. Schwenzer (University Department of Radiology, Eberhard Karls University Tübingen, Germany.

The workshop was endorsed by the following societies: European Cooperation in Science and Technology (COST), EANM, European Society of Magnetic Resonance in Medicine and Biology (ESMRMB), European Society of Molecular Imaging (ESMI), European Institute for Biomedical Imaging Research (EIBIR), German Society of Nuclear Medicine (DGN), German Society of Radiology (DGR), Society of Nuclear Medicine and Molecular Imaging (SNMMI) and World Molecular Imaging Society (WMIS).

We would further like to acknowledge the generous support of the workshop sponsors: Bayer HealthCare, GE Healthcare, Hermes Medical Solutions, Mediso Medical Imaging Systems, mim Software, Mirada Medical, Π.pmod Biomedical Image Quantification and RAPID Biomedical and Siemens Healthcare.

Conflict of Interest

Thomas Beyer is part of a Siemens collaboration activity that supports a PhD student for the duration of 2 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Beyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, D.L., Pichler, B.J., Gückel, B. et al. Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here. Mol Imaging Biol 17, 595–608 (2015). https://doi.org/10.1007/s11307-015-0886-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0886-9

Key words

Navigation