Skip to main content

Advertisement

Log in

[89Zr]Trastuzumab: Evaluation of Radiation Dosimetry, Safety, and Optimal Imaging Parameters in Women with HER2-Positive Breast Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study is to evaluate safety, human radiation dosimetry, and optimal imaging time of [89Zr]trastuzumab in patients with HER2-positive breast cancer.

Procedures

Twelve women with HER2-positive breast cancer underwent [89Zr]trastuzumab positron emission tomography (PET)/X-ray computed tomography (CT) twice within 7 days post-injection. Biodistribution data from whole-torso PET/CT images and organ time-activity curves were created using data from all patients. Human dosimetry was calculated using OLINDA with the adult female model.

Results

High-quality images and the greatest tumor-to-nontumor contrast were achieved with images performed 5 ± 1 day post-injection. Increased [89Zr]trastuzumab uptake was seen in at least one known lesion in ten patients. The liver was the dose-limiting organ (retention of ∼12 % of the injected dose and average dose of 1.54 mSv/MBq). The effective dose was 0.47 mSv/MBq. No adverse effects of [89Zr]trastuzumab were encountered.

Conclusion

[89Zr]trastuzumab was safe and optimally imaged at least 4 days post-injection. The liver was the dose-limiting organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gross ME, Shazer RL, Agus DB (2004) Targeting the HER-kinase axis in cancer. Semin Oncol 31:9–20

    Article  CAS  PubMed  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New Engl J Med 353:1673–1684

    Article  CAS  PubMed  Google Scholar 

  5. Nahta R, Yu D, Hung MC et al (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3:269–280

    Article  CAS  PubMed  Google Scholar 

  6. Burris HA III, Rugo HS, Vukelja SJ et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29:398–405

    Article  CAS  PubMed  Google Scholar 

  7. Mack L, Kerkvliet N, Doig G et al (1997) Relationship of a new histological categorization of ductal carcinoma in situ of the breast with size and the immunohistochemical expression of p53, c-erb B2, bcl-2, and ki-67. Hum Pathol 28:974–979

    Article  CAS  PubMed  Google Scholar 

  8. Rosenthal SI, Depowski PL, Sheehan CE et al (2002) Comparison of HER-2/neu oncogene amplification detected by fluorescence in situ hybridization in lobular and ductal breast cancer. Applied immunohistochemistry & molecular morphology. Appl Immunohistochem Mol Morph 10:40–46

    Article  CAS  Google Scholar 

  9. Barron JJ, Cziraky MJ, Weisman T et al (2009) HER2 testing and subsequent trastuzumab treatment for breast cancer in a managed care environment. Oncologist 14:760–768

    CAS  PubMed  Google Scholar 

  10. Pedrini JL, Francalacci Savaris R, Casales Schorr M et al (2011) The effect of neoadjuvant chemotherapy on hormone receptor status, HER2/neu and prolactin in breast cancer. Tumori 97:704–710

    CAS  PubMed  Google Scholar 

  11. Solomayer EF, Becker S, Pergola-Becker G et al (2006) Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Canc Res Treat 98:179–184

    Article  CAS  Google Scholar 

  12. Wulfing P, Borchard J, Buerger H et al (2006) HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin Cancer Res 12:1715–1720

    Article  PubMed  Google Scholar 

  13. Dijkers EC, de Vries EG, Kosterink JG et al (2008) Immunoscintigraphy as potential tool in the clinical evaluation of HER2/neu targeted therapy. Curr Pharmacol Des 14:3348–3362

    Article  CAS  Google Scholar 

  14. Lower EE, Glass E, Blau R et al (2009) HER-2/neu expression in primary and metastatic breast cancer. Breast Cancer Res Treat 113:301–306

    Article  CAS  PubMed  Google Scholar 

  15. Carlson RW, Allred DC, Anderson BO National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. http://www.nccn.org/professionals/physician_gls/PDF/breast.pdf

  16. Lear-Kaul KC, Yoon HR, Kleinschmidt-DeMasters BK et al (2003) Her-2/neu status in breast cancer metastases to the central nervous system. Arch Pathol Lab Med 127:1451–1457

    CAS  PubMed  Google Scholar 

  17. Capala J, Bouchelouche K (2010) Molecular imaging of HER2-positive breast cancer: a step toward an individualized ‘image and treat’ strategy. Curr Opin Oncol 22:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of [89Zr]-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Therap 87:586–592

    Article  CAS  Google Scholar 

  19. Kurihara H, Hamada A, Yoshida M et al (2015) [64Cu]-DOTA-trastuzumab PET imaging and HER2 specificity of brain metastases in HER2-positive breast cancer patients. Eur J Nucl Med Mol Imaging Res 5:8

    Google Scholar 

  20. Mortimer JE, Bading JR, Colcher DM et al (2014) Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using [64Cu]-DOTA-trastuzumab PET. J Nucl Med 55:23–29

    Article  CAS  PubMed  Google Scholar 

  21. Gaykema SB, Schroder CP, Vitfell-Rasmussen J et al (2014) [89Zr]-trastuzumab and [89Zr]-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res 20:3945–3954

    Article  CAS  PubMed  Google Scholar 

  22. Beylergil V, Morris PG, Smith-Jones PM et al (2013) Pilot study of [68Ga]-DOTA-F(ab′)2-trastuzumab in patients with breast cancer. Nucl Med Commun 34:1157–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baum RP, Prasad V, Muller D et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med 51:892–897

    Article  PubMed  Google Scholar 

  24. Gebhart G, Lamberts LE, Wimana Z et al (2015) Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR Trial. Ann Oncol. doi:10.1093/annonc/mdv577

    PubMed  Google Scholar 

  25. Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013

    Article  PubMed  Google Scholar 

  26. Vosjan MJ, Perk LR, Visser GW et al (2010) Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc 5:739–743

    Article  CAS  PubMed  Google Scholar 

  27. Wooten AL, Madrid E, Schweitzer GD et al (2013) Routine production of Zr-89 using an automated module. Appl Sci 3:593–613

    Article  Google Scholar 

  28. Holland JP, Sheh Y, Lewis JS (2009) Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 36:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lindmo T, Boven E, Cuttitta F et al (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77–89

    Article  CAS  PubMed  Google Scholar 

  30. Lemmens HJ, Bernstein DP, Brodsky JB (2006) Estimating blood volume in obese and morbidly obese patients. Obes Surg 16:773–776

    Article  PubMed  Google Scholar 

  31. Vance GH, Barry TS, Bloom KJ et al (2009) Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch Pathol Lab Med 133:611–612

    PubMed  Google Scholar 

  32. Lewis JT, Ketterling RP, Halling KC et al (2005) Analysis of intratumoral heterogeneity and amplification status in breast carcinomas with equivocal (2+) HER-2 immunostaining. Am J Clin Pathol 124:273–281

    Article  PubMed  Google Scholar 

  33. Brunelli M, Manfrin E, Martignoni G et al (2009) Genotypic intratumoral heterogeneity in breast carcinoma with HER2/neu amplification: evaluation according to ASCO/CAP criteria. Am J Clin Pathol 131:678–682

    Article  PubMed  Google Scholar 

  34. Boyer AP, Collier TS, Vidavsky I et al (2013) Quantitative proteomics with siRNA screening identifies novel mechanisms of trastuzumab resistance in HER2 amplified breast cancers. Mol Cell Prot 12:180–193

    Article  Google Scholar 

  35. Arribas J, Baselga J, Pedersen K et al (2011) p95HER2 and breast cancer. Cancer Res 71:1515–1519

    Article  CAS  PubMed  Google Scholar 

  36. Price-Schiavi SA, Jepson S, Li P et al (2002) Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Intl J Cancer 99:783–791

    Article  CAS  Google Scholar 

  37. Berns K, Horlings HM, Hennessy BT et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402

    Article  CAS  PubMed  Google Scholar 

  38. Zhang S, Huang WC, Li P et al (2011) Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nature Med 17:461–469

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Cancer Institute Grant CA182945, US Department of Energy Grants DESC0008432 and DESC0012737, and the Alvin J. Siteman Cancer Center Imaging and Response Assessment Core. We thank the Washington University Isotope Production team for production of Zr-89 and the Small Animal Imaging facility for animal biodistribution studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Laforest.

Ethics declarations

Conflict of Interest

RB is a consultant for Genentech and has received an honorarium from Genentech and Novartis.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laforest, R., Lapi, S.E., Oyama, R. et al. [89Zr]Trastuzumab: Evaluation of Radiation Dosimetry, Safety, and Optimal Imaging Parameters in Women with HER2-Positive Breast Cancer. Mol Imaging Biol 18, 952–959 (2016). https://doi.org/10.1007/s11307-016-0951-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0951-z

Key words

Navigation