Skip to main content
Log in

[68Ga]PSMA-HBED-CC Uptake in Osteolytic, Osteoblastic, and Bone Marrow Metastases of Prostate Cancer Patients

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate potential differences in “Glu-NH-CO-NH-Lys” radio-labeled with [68Ga]gallium N,N-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N-diacetic acid ([68Ga]PSMA-HBED-CC) uptake in osteolytic, osteoblastic, mixed, and bone marrow metastases in prostate cancer (PC) patients.

Procedures

This retrospective study was approved by the local ethics committee. Patients who received [68Ga]PSMA-HBED-CC positron emission tomography/computed tomography ([68Ga]PSMA-PET/CT) with at least one positive bone metastasis were included in this study. Only patients who have not received systemic therapy for their PC were included. Bone metastases had to be confirmed by at least one other imaging modality or follow-up investigation. The maximum standardized uptake value (SUVmax) and mean Hounsfield units (HUmean) of each metastasis were measured. Based on CT, each metastasis was classified as osteolytic (OL), osteoblastic (OB), bone marrow (BM), or mixed (M).

Results

One hundred fifty-four bone metastases in 30 patients were evaluated. Eighty out of 154 (51.9%) metastases were classified as OB, 21/154 (13.6%) as OL, 23/154 (14.9%) as M, and 30/154 (19.5%) as BM. The SUVmax for the different types of metastases were 10.6 ± 7.07 (OB), 24.0 ± 19.3 (OL), 16.0 ± 21.0 (M), and 14.7 ± 9.9 (BM). The SUVmax of OB vs. OL and OB vs. BM metastases differed significantly (p ≤ 0.025). A significant negative correlation between HUmean and SUVmax (r = −0.23, p < 0.05) was measured.

Conclusions

[68Ga]PSMA-HBED-CC uptake is higher in osteolytic and bone marrow metastases compared to osteoblastic metastases. Information derived from [68Ga]PSMA-PET and CT complement each other for the reliable diagnosis of the different types of bone metastases in PC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

[68Ga]PSMA-HBED-CC:

“Glu-NH-CO-NH-Lys” radio-labeled with [68Ga]gallium N,N-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N-diacetic acid

[68Ga]PSMA-PET/CT:

[68Ga]PSMA-HBED-CC-based positron emission tomography/computed tomography

2D ROI:

Two-dimensional region of interest

OL:

Osteolytic

OB:

Osteoblastic

M:

Mixed

BM:

Bone marrow

SUVmax :

Maximum of standardized uptake value

SUV:

Standardized uptake value

BVC:

Best valuable comparator

PC:

Prostate cancer

[99mTc]DPD bone scan:

99mTechnetium-3,3-diphospho-1,2-propanedicarbonacid bone scan

CT:

Computed tomography

HU:

Hounsfield unit

References

  1. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583

    Article  CAS  PubMed  Google Scholar 

  3. Carlin BI, Andriole GL (2000) The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 88:2989–2994

    Article  CAS  PubMed  Google Scholar 

  4. Charhon SA, Chapuy MC, Delvin EE et al (1983) Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer 51:918–924

    Article  CAS  PubMed  Google Scholar 

  5. Dushyanthen S, Cossigny DA, Quan GM (2013) The osteoblastic and osteoclastic interactions in spinal metastases secondary to prostate cancer. Cancer Growth Metastasis 6:61–80

    PubMed  PubMed Central  Google Scholar 

  6. Ibrahim T, Flamini E, Mercatali L et al (2010) Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer 116:1406–1418

    Article  CAS  PubMed  Google Scholar 

  7. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  CAS  PubMed  Google Scholar 

  8. Roodman GD (2004) Mechanisms of bone metastasis. Discov Med 4:144–148

    PubMed  Google Scholar 

  9. Roudier MP, Vesselle H, True LD et al (2003) Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis 20:171–180

    Article  CAS  PubMed  Google Scholar 

  10. Taichman RS, Loberg RD, Mehra R, Pienta KJ (2007) The evolving biology and treatment of prostate cancer. J Clin Invest 117:2351–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin JK, Dayyani F, Gallick GE (2011) Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer 128:2545–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lange MB, Nielsen ML, Andersen JD et al (2016) Diagnostic accuracy of imaging methods for the diagnosis of skeletal malignancies: a retrospective analysis against a pathology-proven reference. Eur J Radiol 85:61–67

    Article  PubMed  Google Scholar 

  13. Evangelista L, Panunzio A, Polverosi R et al (2012) Early bone marrow metastasis detection: the additional value of FDG-PET/CT vs. CT imaging. Biomed Pharmacother 66:448–453

    Article  PubMed  Google Scholar 

  14. Afshar-Oromieh A, Malcher A, Eder M et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495

    Article  CAS  PubMed  Google Scholar 

  15. Eder M, Neels O, Muller M et al (2014) Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel) 7:779–796

    Article  CAS  Google Scholar 

  16. Eder M, Schafer M, Bauder-Wust U et al (2012) 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 23:688–697

    Article  CAS  PubMed  Google Scholar 

  17. Eiber M, Maurer T, Souvatzoglou M et al (2015) Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 56:668–674

    Article  PubMed  Google Scholar 

  18. Maurer T, Gschwend JE, Rauscher I et al (2016) Diagnostic efficacy of 68Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol 195:1436–1443

    Article  PubMed  Google Scholar 

  19. Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42:197–209

    Article  CAS  PubMed  Google Scholar 

  20. Prasad V, Steffen IG, Diederichs G et al (2016) Biodistribution of [68Ga]PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol Imaging Biol 18:428–436

    Article  CAS  PubMed  Google Scholar 

  21. Pyka T, Okamoto S, Dahlbender M et al (2016) Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging 43:2114–2121

    Article  CAS  PubMed  Google Scholar 

  22. Dietlein M, Kobe C, Kuhnert G et al (2015) Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol 17:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ceci F, Castellucci P, Graziani T et al (2015) 11C-choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clin Nucl Med 40:e265–e270

    Article  PubMed  Google Scholar 

  24. Saad F, Clarke N, Colombel M (2006) Natural history and treatment of bone complications in prostate cancer. Eur Urol 49:429–440

    Article  CAS  PubMed  Google Scholar 

  25. Rafiei S, Komarova SV (2013) Molecular signaling pathways mediating osteoclastogenesis induced by prostate cancer cells. BMC Cancer 13:605

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sottnik JL, Keller ET (2013) Understanding and targeting osteoclastic activity in prostate cancer bone metastases. Curr Mol Med 13:626–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Dai J, Qi Y et al (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107:1235–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith MR, Saad F, Coleman R et al (2012) Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379:39–46

    Article  CAS  PubMed  Google Scholar 

  29. Fogelman I (1980) Skeletal uptake of diphosphonate: a review. Eur J Nucl Med 5:473–476

    CAS  PubMed  Google Scholar 

  30. Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31:206–211

    Article  CAS  PubMed  Google Scholar 

  31. Ahmadzadehfar H, Azgomi K, Hauser S et al (2017) 68Ga-PSMA-11 PET as a gatekeeper for the treatment of metastatic prostate cancer with 223Ra: proof of concept. J Nucl Med 58:438–444

    Article  PubMed  Google Scholar 

  32. Ghanem N, Uhl M, Brink I et al (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55:41–55

    Article  CAS  PubMed  Google Scholar 

  33. Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90

    Article  PubMed  Google Scholar 

  34. Benesova M, Schafer M, Bauder-Wust U et al (2015) Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med 56:914–920

    Article  CAS  PubMed  Google Scholar 

  35. Okamoto S, Thieme A, Allmann J et al (2017) Radiation dosimetry for 177Lu-PSMA I&T in metastatic castration-resistant prostate cancer: absorbed dose in normal organs and tumor lesions. J Nucl Med 58:445–450

    Article  PubMed  Google Scholar 

  36. Scarpa L, Buxbaum S, Kendler D et al (2017) The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates. Eur J Nucl Med Mol Imaging 44:788–800

    Article  CAS  PubMed  Google Scholar 

  37. Lecouvet FE, El Mouedden J, Collette L et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc-99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75

    Article  PubMed  Google Scholar 

  38. Woo S, Kim SY, Kim SH, Cho JY (2016) Journal club: identification of bone metastasis with routine prostate MRI: a study of patients with newly diagnosed prostate cancer. AJR Am J Roentgenol 206:1156–1163

    Article  PubMed  Google Scholar 

  39. Blazak JK, Thomas P (2016) Paget disease: a potential pitfall in PSMA PET for prostate cancer. Clin Nucl Med 41:699–700

    Article  PubMed  Google Scholar 

  40. Gykiere P, Goethals L, Everaert H (2016) Healing sacral fracture masquerading as metastatic bone disease on a 68Ga-PSMA PET/CT. Clin Nucl Med 41:e346–e347

    Article  PubMed  Google Scholar 

  41. Artigas C, Otte FX, Lemort M et al (2017) Vertebral hemangioma mimicking bone metastasis in 68Ga-PSMA ligand PET/CT. Clin Nucl Med 42:368–370

    Article  PubMed  Google Scholar 

  42. Fendler WP, Calais J, Allen-Auerbach M et al (2017) 68Ga-PSMA-11 PET/CT interobserver agreement for prostate cancer assessments: an international multicenter prospective study. J Nucl Med. doi:10.2967/jnumed.117.190827

Download references

Acknowledgements

MRM is grateful for the financial support from the Deutsche Forschungsgemeinschaft (DFG, 5943/31/41/91).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Carlo Janssen.

Ethics declarations

This retrospective study was approved by the institutional ethics review board of the Charité University Hospital, Berlin.

Informed Consent

In this retrospective study, written informed consent was waived by the Institutional Review Board.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssen, JC., Woythal, N., Meißner, S. et al. [68Ga]PSMA-HBED-CC Uptake in Osteolytic, Osteoblastic, and Bone Marrow Metastases of Prostate Cancer Patients. Mol Imaging Biol 19, 933–943 (2017). https://doi.org/10.1007/s11307-017-1101-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1101-y

Key words

Navigation