Skip to main content
Erschienen in: Molecular Imaging and Biology 1/2019

10.05.2018 | Research Article

Androgen Receptor Signaling in Castration-Resistant Prostate Cancer Alters Hyperpolarized Pyruvate to Lactate Conversion and Lactate Levels In Vivo

verfasst von: Niki Zacharias, Jaehyuk Lee, Sumankalai Ramachandran, Sriram Shanmugavelandy, James McHenry, Prasanta Dutta, Steven Millward, Seth Gammon, Eleni Efstathiou, Patricia Troncoso, Daniel E. Frigo, David Piwnica-Worms, Christopher J Logothetis, Sankar N Maity, Mark A Titus, Pratip Bhattacharya

Erschienen in: Molecular Imaging and Biology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Androgen receptor (AR) signaling affects prostate cancer (PCa) growth, metabolism, and progression. Often, PCa progresses from androgen-sensitive to castration-resistant prostate cancer (CRPC) following androgen-deprivation therapy. Clinicopathologic and genomic characterizations of CRPC tumors lead to subdividing CRPC into two subtypes: (1) AR-dependent CRPC containing dysregulation of AR signaling alterations in AR such as amplification, point mutations, and/or generation of splice variants in the AR gene; and (2) an aggressive variant PCa (AVPC) subtype that is phenotypically similar to small cell prostate cancer and is defined by chemotherapy sensitivity, gain of neuroendocrine or pro-neural marker expression, loss of AR expression, and combined alterations of PTEN, TP53, and RB1 tumor suppressors. Previously, we reported patient-derived xenograft (PDX) animal models that contain characteristics of these CRPC subtypes. In this study, we have employed the PDX models to test metabolic alterations in the CRPC subtypes.

Procedures

Mass spectrometry and nuclear magnetic resonance analysis along with in vivo hyperpolarized 1-[13C]pyruvate spectroscopy experiments were performed on prostate PDX animal models.

Results

Using hyperpolarized 1-[13C]pyruvate conversion to 1-[13C]lactate in vivo as well as lactate measurements ex vivo, we have found increased lactate production in AR-dependent CRPC PDX models even under low-hormone levels (castrated mouse) compared to AR-negative AVPC PDX models.

Conclusions

Our analysis underscores the potential of hyperpolarized metabolic imaging in determining the underlying biology and in vivo phenotyping of CRPC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Logothetis CJ, Gallick GE, Maity SN, Kim J, Aparicio A, Efstathiou E, Lin SH (2013) Molecular classification of prostate cancer progression: foundation for marker-driven treatment of prostate cancer. Cancer Discov 3:849–861CrossRefPubMedPubMedCentral Logothetis CJ, Gallick GE, Maity SN, Kim J, Aparicio A, Efstathiou E, Lin SH (2013) Molecular classification of prostate cancer progression: foundation for marker-driven treatment of prostate cancer. Cancer Discov 3:849–861CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP (2014) Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 33:2815–2825CrossRefPubMed Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP (2014) Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 33:2815–2825CrossRefPubMed
3.
Zurück zum Zitat de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI, COU-AA-301 Investigators (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005CrossRefPubMedPubMedCentral de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI, COU-AA-301 Investigators (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Ryan CJ, Shah S, Efstathiou E, Smith MR, Taplin ME, Bubley GJ, Logothetis CJ, Kheoh T, Kilian C, Haqq CM, Molina A, Small EJ (2011) Phase II study of abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer displaying bone flare discordant with serologic response. Clin Cancer Res 17:4854–4861CrossRefPubMedPubMedCentral Ryan CJ, Shah S, Efstathiou E, Smith MR, Taplin ME, Bubley GJ, Logothetis CJ, Kheoh T, Kilian C, Haqq CM, Molina A, Small EJ (2011) Phase II study of abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer displaying bone flare discordant with serologic response. Clin Cancer Res 17:4854–4861CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Efstathiou E, Titus M, Tsavachidou D, Tzelepi V, Wen S, Hoang A, Molina A, Chieffo N, Smith LA, Karlou M, Troncoso P, Logothetis CJ (2012) Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. J Clin Oncol 30:637–643CrossRefPubMed Efstathiou E, Titus M, Tsavachidou D, Tzelepi V, Wen S, Hoang A, Molina A, Chieffo N, Smith LA, Karlou M, Troncoso P, Logothetis CJ (2012) Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. J Clin Oncol 30:637–643CrossRefPubMed
6.
Zurück zum Zitat Cookson MS, Roth BJ, Dahm P, Engstrom C, Freedland SJ, Hussain M, Lin DW, Lowrance WT, Murad MH, Oh WK, Penson DF, Kibel AS (2013) Castration-resistant prostate cancer: AUA Guideline. J Urol 190:429–438CrossRefPubMed Cookson MS, Roth BJ, Dahm P, Engstrom C, Freedland SJ, Hussain M, Lin DW, Lowrance WT, Murad MH, Oh WK, Penson DF, Kibel AS (2013) Castration-resistant prostate cancer: AUA Guideline. J Urol 190:429–438CrossRefPubMed
7.
Zurück zum Zitat Chen EJ, Sowalsky AG, Gao S, Cai C, Voznesensky O, Schaefer R, Loda M, True LD, Ye H, Troncoso P, Lis RL, Kantoff PW, Montgomery RB, Nelson PS, Bubley GJ, Balk SP, Taplin ME (2015) Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res 21:1273–1280CrossRefPubMed Chen EJ, Sowalsky AG, Gao S, Cai C, Voznesensky O, Schaefer R, Loda M, True LD, Ye H, Troncoso P, Lis RL, Kantoff PW, Montgomery RB, Nelson PS, Bubley GJ, Balk SP, Taplin ME (2015) Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res 21:1273–1280CrossRefPubMed
8.
Zurück zum Zitat Aparicio AM, Shen L, Tapia EL, Lu JF, Chen HC, Zhang J, Wu G, Wang X, Troncoso P, Corn P, Thompson TC, Broom B, Baggerly K, Maity SN, Logothetis CJ (2016) Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res 22:1520–30CrossRefPubMed Aparicio AM, Shen L, Tapia EL, Lu JF, Chen HC, Zhang J, Wu G, Wang X, Troncoso P, Corn P, Thompson TC, Broom B, Baggerly K, Maity SN, Logothetis CJ (2016) Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res 22:1520–30CrossRefPubMed
9.
Zurück zum Zitat Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, Goodrich MM, Labbé DP, Gomez EC, Wang J, Long HW, Xu B, Brown M, Loda M, Sawyers CL, Ellis L, Goodrich DW (2017) Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83CrossRefPubMedPubMedCentral Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, Goodrich MM, Labbé DP, Gomez EC, Wang J, Long HW, Xu B, Brown M, Loda M, Sawyers CL, Ellis L, Goodrich DW (2017) Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z, Shah N, Adams EJ, Abida W, Watson PA, Prandi D, Huang CH, de Stanchina E, Lowe SW, Ellis L, Beltran H, Rubin MA, Goodrich DW, Demichelis F, Sawyers CL (2017) SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:84–88CrossRefPubMedPubMedCentral Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z, Shah N, Adams EJ, Abida W, Watson PA, Prandi D, Huang CH, de Stanchina E, Lowe SW, Ellis L, Beltran H, Rubin MA, Goodrich DW, Demichelis F, Sawyers CL (2017) SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:84–88CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, Bon H, Zecchini V, Smith DM, DeNicola GM, Mathews N, Osborne M, Hadfield J, MacArthur S, Adryan B, Lyons SK, Brindle KM, Griffiths J, Gleave ME, Rennie PS, Neal DE, Mills IG (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30:2719–2733CrossRefPubMedPubMedCentral Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, Bon H, Zecchini V, Smith DM, DeNicola GM, Mathews N, Osborne M, Hadfield J, MacArthur S, Adryan B, Lyons SK, Brindle KM, Griffiths J, Gleave ME, Rennie PS, Neal DE, Mills IG (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30:2719–2733CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE (2014) Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene 33:5251–5261CrossRefPubMed Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE (2014) Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene 33:5251–5261CrossRefPubMed
13.
Zurück zum Zitat Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE (2014) Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogene 3:e103CrossRef Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE (2014) Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogene 3:e103CrossRef
14.
Zurück zum Zitat White MA, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, Mukhopadhyay R, Jasso D, Dawood W, Coarfa C, Frigo DE (2017) Glutamine transporters are targets of multiple oncogenic signaling pathways in prostate cancer. Mol Cancer Res 15:1017–1028CrossRefPubMedPubMedCentral White MA, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, Mukhopadhyay R, Jasso D, Dawood W, Coarfa C, Frigo DE (2017) Glutamine transporters are targets of multiple oncogenic signaling pathways in prostate cancer. Mol Cancer Res 15:1017–1028CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM, Coarfa C, Frigo DE, Putluri N, Sreekumar A, Weigel NL (2015) Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 6:31997–32012CrossRefPubMedPubMedCentral Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM, Coarfa C, Frigo DE, Putluri N, Sreekumar A, Weigel NL (2015) Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 6:31997–32012CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270PubMed Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270PubMed
18.
Zurück zum Zitat Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, Guo X, Chang LJ, Zhang Y, You MJ, Koochekpour S, Saleem M, Huang H, Lu J, Deng Y (2014) Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep 8:1461–1474CrossRefPubMedPubMedCentral Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, Guo X, Chang LJ, Zhang Y, You MJ, Koochekpour S, Saleem M, Huang H, Lu J, Deng Y (2014) Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep 8:1461–1474CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA (2016) Molecular imaging of prostate cancer. Radiographics 36:142–159CrossRefPubMed Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA (2016) Molecular imaging of prostate cancer. Radiographics 36:142–159CrossRefPubMed
20.
Zurück zum Zitat Golman K, Zandt RI, Lerche M et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860CrossRefPubMed Golman K, Zandt RI, Lerche M et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860CrossRefPubMed
21.
Zurück zum Zitat Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kohler SJ, Tropp J, Hurd RE, Yen YF, Nelson SJ, Vigneron DB, Kurhanewicz J (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615CrossRefPubMedPubMedCentral Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kohler SJ, Tropp J, Hurd RE, Yen YF, Nelson SJ, Vigneron DB, Kurhanewicz J (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66:505–519CrossRefPubMed Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66:505–519CrossRefPubMed
23.
Zurück zum Zitat Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8:94–107CrossRefPubMed Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8:94–107CrossRefPubMed
24.
Zurück zum Zitat Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97CrossRefPubMedPubMedCentral Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Chen AP, Albers MJ, Cunningham CH, Kohler SJ, Yen YF, Hurd RE, Tropp J, Bok R, Pauly JM, Nelson SJ, Kurhanewicz J, Vigneron DB (2007) Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magn Reson Med 58:1099–1106CrossRefPubMed Chen AP, Albers MJ, Cunningham CH, Kohler SJ, Yen YF, Hurd RE, Tropp J, Bok R, Pauly JM, Nelson SJ, Kurhanewicz J, Vigneron DB (2007) Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magn Reson Med 58:1099–1106CrossRefPubMed
27.
Zurück zum Zitat Hurd RE, Yen YF, Chen A, Ardenkjaer-Larsen JH (2012) Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imaging 36:1314–1328CrossRefPubMed Hurd RE, Yen YF, Chen A, Ardenkjaer-Larsen JH (2012) Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imaging 36:1314–1328CrossRefPubMed
28.
Zurück zum Zitat Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108CrossRefPubMedPubMedCentral Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Benito J, Ramirez MS, Millward NZ, Velez J, Harutyunyan KG, Lu H, Shi YX, Matre P, Jacamo R, Ma H, Konoplev S, McQueen T, Volgin A, Protopopova M, Mu H, Lee J, Bhattacharya PK, Marszalek JR, Davis RE, Bankson JA, Cortes JE, Hart CP, Andreeff M, Konopleva M (2016) Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin Cancer Res 22:1687–1698CrossRefPubMed Benito J, Ramirez MS, Millward NZ, Velez J, Harutyunyan KG, Lu H, Shi YX, Matre P, Jacamo R, Ma H, Konoplev S, McQueen T, Volgin A, Protopopova M, Mu H, Lee J, Bhattacharya PK, Marszalek JR, Davis RE, Bankson JA, Cortes JE, Hart CP, Andreeff M, Konopleva M (2016) Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin Cancer Res 22:1687–1698CrossRefPubMed
30.
Zurück zum Zitat Tzelepi V, Zhang J, Lu JF, Kleb B, Wu G, Wan X, Hoang A, Efstathiou E, Sircar K, Navone NM, Troncoso P, Liang S, Logothetis CJ, Maity SN, Aparicio AM (2012) Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin Cancer Res 18:666–677CrossRefPubMed Tzelepi V, Zhang J, Lu JF, Kleb B, Wu G, Wan X, Hoang A, Efstathiou E, Sircar K, Navone NM, Troncoso P, Liang S, Logothetis CJ, Maity SN, Aparicio AM (2012) Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin Cancer Res 18:666–677CrossRefPubMed
31.
Zurück zum Zitat Maity SN, Titus MA, Gyftaki R, Wu G, Lu JF, Ramachandran S, Li-Ning-Tapia EM, Logothetis CJ, Araujo JC, Efstathiou E (2016) Targeting of CYP17A1 lyase by VT-464 inhibits adrenal and intratumoral androgen biosynthesis and tumor growth of castration resistant prostate cancer. Sci Rep 6:35354CrossRefPubMedPubMedCentral Maity SN, Titus MA, Gyftaki R, Wu G, Lu JF, Ramachandran S, Li-Ning-Tapia EM, Logothetis CJ, Araujo JC, Efstathiou E (2016) Targeting of CYP17A1 lyase by VT-464 inhibits adrenal and intratumoral androgen biosynthesis and tumor growth of castration resistant prostate cancer. Sci Rep 6:35354CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Lee J, Ramirez MS, Walker CM, Chen Y, Yi S, Sandulache VC, Lai SY, Bankson JA (2015) High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system. J Magn Reson 260:20–27CrossRefPubMedPubMedCentral Lee J, Ramirez MS, Walker CM, Chen Y, Yi S, Sandulache VC, Lai SY, Bankson JA (2015) High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system. J Magn Reson 260:20–27CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ornelas A, McCullough CR, Lu Z, Zacharias NM, Kelderhouse LE, Gray J, Yang H, Engel BJ, Wang Y, Mao W, Sutton MN, Bhattacharya PK, Bast RC, Millward SW (2016) Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models. BMC Cancer 16:824CrossRefPubMedPubMedCentral Ornelas A, McCullough CR, Lu Z, Zacharias NM, Kelderhouse LE, Gray J, Yang H, Engel BJ, Wang Y, Mao W, Sutton MN, Bhattacharya PK, Bast RC, Millward SW (2016) Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models. BMC Cancer 16:824CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Zacharias NM, McCullough C, Shanmugavelandy S, Lee J, Lee Y, Dutta P, McHenry J, Nguyen L, Norton W, Jones LW, Bhattacharya PK (2017) Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci Rep 7:16159CrossRefPubMedPubMedCentral Zacharias NM, McCullough C, Shanmugavelandy S, Lee J, Lee Y, Dutta P, McHenry J, Nguyen L, Norton W, Jones LW, Bhattacharya PK (2017) Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci Rep 7:16159CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807CrossRefPubMed Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807CrossRefPubMed
36.
Zurück zum Zitat Han J, Gagnon S, Eckle T, Borchers CH (2013) Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS. Electrophoresis 34:2891–2900PubMedPubMedCentral Han J, Gagnon S, Eckle T, Borchers CH (2013) Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS. Electrophoresis 34:2891–2900PubMedPubMedCentral
37.
Zurück zum Zitat Viswanath P, Najac C, Izquierdo-Garcia JL, Pankov A, Hong C, Eriksson P, Costello JF, Pieper RO, Ronen SM (2016) Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget 7:34942–34955CrossRefPubMedPubMedCentral Viswanath P, Najac C, Izquierdo-Garcia JL, Pankov A, Hong C, Eriksson P, Costello JF, Pieper RO, Ronen SM (2016) Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget 7:34942–34955CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Balzan R, Fernandes L, Pidial L, Comment A, Tavitian B, Vasos PR (2017) Pyruvate cellular uptake and enzymatic conversion probed by dissolution DNP-NMR: the impact of overexpressed membrane transporters. Magn Reson Chem 55:579–583CrossRefPubMed Balzan R, Fernandes L, Pidial L, Comment A, Tavitian B, Vasos PR (2017) Pyruvate cellular uptake and enzymatic conversion probed by dissolution DNP-NMR: the impact of overexpressed membrane transporters. Magn Reson Chem 55:579–583CrossRefPubMed
39.
Zurück zum Zitat Hurd RE, Spielman D, Josan S, Yen YF, Pfefferbaum A, Mayer D (2013) Exchange-linked dissolution agents in dissolution-DNP 13C metabolic imaging. Magn Reson Med 70:936–942CrossRefPubMed Hurd RE, Spielman D, Josan S, Yen YF, Pfefferbaum A, Mayer D (2013) Exchange-linked dissolution agents in dissolution-DNP 13C metabolic imaging. Magn Reson Med 70:936–942CrossRefPubMed
40.
Zurück zum Zitat Sandulache VC, Chen Y, Lee J, Rubinstein A, Ramirez MS, Skinner HD, Walker CM, Williams MD, Tailor R, Court LE, Bankson JA, Lai SY (2014) Evaluation of hyperpolarized [1-(1)(3)C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time. PLoS One 9:e87031CrossRefPubMedPubMedCentral Sandulache VC, Chen Y, Lee J, Rubinstein A, Ramirez MS, Skinner HD, Walker CM, Williams MD, Tailor R, Court LE, Bankson JA, Lai SY (2014) Evaluation of hyperpolarized [1-(1)(3)C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time. PLoS One 9:e87031CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Walker CM, Lee J, Ramirez MS, Schellingerhout D, Millward S, Bankson JA (2013) A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-13C]-pyruvate. PLoS One 8:e71274CrossRefPubMedPubMedCentral Walker CM, Lee J, Ramirez MS, Schellingerhout D, Millward S, Bankson JA (2013) A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-13C]-pyruvate. PLoS One 8:e71274CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Gordon JW, Larson PE (2016) Pulse sequences for hyperpolarized MRS. EMAGRES 5:1229–1245CrossRef Gordon JW, Larson PE (2016) Pulse sequences for hyperpolarized MRS. EMAGRES 5:1229–1245CrossRef
43.
Zurück zum Zitat Park, J. M., Josan, S., Jang, T., Merchant M., Watkins R., Hurd R. E., Recht L. D., Mayer D., Spielman D. M. (2016) Volumetric spiral chemical shift imaging of hyperpolarized [2-[13 C]pyruvate in a rat c6 glioma model. Magn Reson Med 75: 973–984 Park, J. M., Josan, S., Jang, T., Merchant M., Watkins R., Hurd R. E., Recht L. D., Mayer D., Spielman D. M. (2016) Volumetric spiral chemical shift imaging of hyperpolarized [2-[13 C]pyruvate in a rat c6 glioma model. Magn Reson Med 75: 973–984
44.
Zurück zum Zitat Gordon JW, Vigneron DB, Larson PE (2017) Development of a symmetric echo planar imaging framework for clinical translation of rapid dynamic hyperpolarized 13C imaging. Magn Reson Med 77:826–832CrossRefPubMed Gordon JW, Vigneron DB, Larson PE (2017) Development of a symmetric echo planar imaging framework for clinical translation of rapid dynamic hyperpolarized 13C imaging. Magn Reson Med 77:826–832CrossRefPubMed
45.
Zurück zum Zitat Perez-Escuredo J, Van Hee VF, Sboarina M et al (2016) Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta 1863:2481–2497CrossRefPubMedPubMedCentral Perez-Escuredo J, Van Hee VF, Sboarina M et al (2016) Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta 1863:2481–2497CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Zierhut ML, Yen YF, Chen AP, Bok R, Albers MJ, Zhang V, Tropp J, Park I, Vigneron DB, Kurhanewicz J, Hurd RE, Nelson SJ (2010) Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson 202:85–92CrossRefPubMed Zierhut ML, Yen YF, Chen AP, Bok R, Albers MJ, Zhang V, Tropp J, Park I, Vigneron DB, Kurhanewicz J, Hurd RE, Nelson SJ (2010) Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson 202:85–92CrossRefPubMed
Metadaten
Titel
Androgen Receptor Signaling in Castration-Resistant Prostate Cancer Alters Hyperpolarized Pyruvate to Lactate Conversion and Lactate Levels In Vivo
verfasst von
Niki Zacharias
Jaehyuk Lee
Sumankalai Ramachandran
Sriram Shanmugavelandy
James McHenry
Prasanta Dutta
Steven Millward
Seth Gammon
Eleni Efstathiou
Patricia Troncoso
Daniel E. Frigo
David Piwnica-Worms
Christopher J Logothetis
Sankar N Maity
Mark A Titus
Pratip Bhattacharya
Publikationsdatum
10.05.2018
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 1/2019
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1199-6

Weitere Artikel der Ausgabe 1/2019

Molecular Imaging and Biology 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.