Skip to main content

Advertisement

Log in

Metabolic Imaging Phenotype Using Radiomics of [18F]FDG PET/CT Associated with Genetic Alterations of Colorectal Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To understand the association between genetic mutations and radiomics of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/x-ray computed tomography (CT) in patients with colorectal cancer (CRC).

Procedures

This study included 74 CRC patients who had undergone preoperative [18F]FDG PET/CT. A total of 65 PET/CT-related features including intensity, volume-based, histogram, and textural features were calculated. High-resolution melting methods were used for genetic mutation analysis.

Results

Genetic mutants were found in 21 KRAS tumors (28 %), 31 TP53 tumors (42 %), and 17 APC tumors (23 %). Tumors with a mutated KRAS had an increased value at the 25th percentile of maximal standardized uptake value (SUVmax) within their metabolic tumor volume (MTV) (P < .0001; odds ratio [OR] 1.99; 95 % confidence interval [CI] 1.37–2.90) and their contrast from the gray-level cooccurrence matrix (P = .005; OR 1.52; 95 % CI 1.14–2.04). A mutated TP53 was associated with an increased value of short-run low gray-level emphasis derived from the gray-level run length matrix (P = .001; OR 243006.0; 95 % CI 59.2–996,872,313). APC mutants exhibited lower low gray-level zone emphasis derived from the gray-level zone length matrix (P = .006; OR < .0001; 95 % CI 0.000–0.22).

Conclusion

PET/CT-derived radiomics can provide supplemental information to determine KRAS, TP53, and APC genetic alterations in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  Google Scholar 

  2. Leslie A, Pratt NR, Gillespie K, Sales M, Kernohan NM, Smith G, Wolf CR, Carey FA, Steele RJ (2003) Mutations of APC, KRS, and P53 are associated with specific chromosomal aberrations in colorectal adenocarcinomas. Cancer Res 63:4656–4661

    CAS  PubMed  Google Scholar 

  3. Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ (2005) The prognostic significance of KRAS, P53, and APC mutations in colorectal carcinoma. Gut 54:1283–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) KRAS mutations and benefit from cetuximab in advanced colorectal cancers. N Engl J Med 359:1757–1765

    Article  CAS  Google Scholar 

  5. Lièvre A, Bachet JB, Boige V, Cayre A, le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, André T, Bibeau F, Diebold MD, Rougier P, Ducreux M, Tomasic G, Emile JF, Penault-Llorca F, Laurent-Puig P (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379

    Article  CAS  PubMed  Google Scholar 

  6. Westra JL, Schaapveld M, Hollema H, de Boer JP, Kraak MMJ, de Jong D, ter Elst A, Mulder NH, Buys CHCM, Hofstra RMW, Plukker JTM (2005) Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant treated stage III colon cancer patients. J Clin Oncol 23:5635–5643

    Article  CAS  PubMed  Google Scholar 

  7. Chen TH, Chang SW, Huang CC, Wang KL, Yeh KT, Liu CN, Lee H, Lin CC, Cheng YW (2013) The prognostic significance of APC gene mutation and miR-21 expression in advanced-stage colorectal cancer. Color Dis 15:1367–1374

    Article  Google Scholar 

  8. Kawada K, Nakamoto Y, Kawada M, Hida K, Matsumoto T, Murakami T, Hasegawa S, Togashi K, Sakai Y (2012) Relationship between 18F-Fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal Cancer. Clin Cancer Res 18:1696–1703

    Article  CAS  PubMed  Google Scholar 

  9. Chen SW, Lin CY, Ho CM, Chang YS, Yang SF, Kao CH, Chang JG (2015) Genetic alterations in colorectal cancer have different patterns on 18F-FDG PET/CT. Clin Nucl Med 40:621–626

    Article  PubMed  Google Scholar 

  10. Lovinfosse P, Koopmansch B, Lambert F, Jodogne S, Kustermans G, Hatt M, Visvikis D, Seidel L, Polus M, Albert A, Delvenne P, Hustinx R (2016) 18F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status. Br J Radiol 89:20160212

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krikelis D, Skoura E, Kotoula V, Rondogianni P, Pianou N, Samartzis A, Xanthakis I, Fountzilas G, Datseris IE (2014) Lack of association between KRAS mutations and 18F-FDG PET/CT in caucasian metastatic colorectal cancer patients. Anticancer Res 34:2571–2579

    PubMed  Google Scholar 

  12. Iwamoto S, Kawada K, Nakamoto Y et al (2014) Regulation of 18F-fluorodeoxyglucose accumulation in colorectal cancer cells with mutated KRAS. J Nucl Med 55:2038–2044

    Article  CAS  PubMed  Google Scholar 

  13. Tixier F, Groves AM, Goh V, Hatt M, Ingrand P, le Rest CC, Visvikis D (2014) Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer. PLoS One 9:e99567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Er TK, Chang JG (2012) High-resolution melting: applications in genetic disorders. Clin Chim Acta 414:197–201

    Article  CAS  PubMed  Google Scholar 

  15. Shen WC, Chen SW, Liang JA, Hsieh TC, Yen KY, Kao CH (2017) 18Fluorodeoxyglucose positron emission tomography for the textural features of cervical cancer associated with lymph node metastasis and histological type. Eur J Nucl Med Mol Imaging 44:1721–1731

    Article  PubMed  Google Scholar 

  16. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Article  Google Scholar 

  17. Sun C, Wee WG (1983) Neighboring gray level dependence matrix for texture classification. Comput Vis Graph Image Process 23:341–352

    Article  Google Scholar 

  18. Loh H, Leu J, Luo R (1988) The analysis of natural textures using run length features. IEEE Trans Ind Electron 35:323–328

    Article  Google Scholar 

  19. Thibault G, Fertil B, Navarro C et al (2009) Texture indexes and gray level size zone matrix: application to cell nuclei classification. In: 10th International Conference on Pattern Recognition and Information Processing, PRIP 2009, Minsk, Belarus, pp 140–145

  20. Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, Ye Z, Makrigiorgos M, Fennessy F, Mak RH, Gillies R, Quackenbush J, Aerts HJWL (2017) Somatic mutations drive distinct imaging phenotypes in lung Cancer. Cancer Res 77:3922–3930

    Article  CAS  PubMed  Google Scholar 

  21. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JKV, Markowitz S, Zhou S, Diaz LA, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, McAllister PK, Morton RF, Schilsky RL (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–2096

    Article  PubMed  Google Scholar 

  24. Yip SS, Kim J, Coroller TP et al (2017) Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J Nucl Med 58:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Munro AJ, Lain S, Lane DP (2005) P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer 92:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700

    Article  CAS  PubMed  Google Scholar 

  28. Cheon GJ, Chung HK, Choi JA, Lee SJ, Ahn SH, Lee TS, Choi CW, Lim SM (2007) Cellular metabolic responses of PET radiotracers to 188Re radiation in an MCF7 cell line containing dominant-negative mutant P53. Nucl Med Biol 34:425–432

    Article  CAS  PubMed  Google Scholar 

  29. Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1:55–67

    Article  CAS  PubMed  Google Scholar 

  30. Hatt M, Tixier F, Pierce L, Kinahan PE, le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 44:151–165

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Health and Welfare, Taiwan (MOHW107-TDU-B-212-123004), China Medical University Hospital; Academia Sinica Stroke Biosignature Project (BM10701010021); MOST Clinical Trial Consortium for Stroke (MOST 106-2321-B-039-005-); Tseng-Lien Lin Foundation, Taichung, Taiwan; and Katsuzo and Kiyo Aoshima Memorial Funds, Japan, China Medical University Hospital (CRS-106-039, CRS-106-041). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed substantially to, and are in agreement with the content of, the manuscript: conception/design: Shang-Wen Chen, Chia-Hung Kao; provision of study materials: Chia-Hung Kao, Jan-Gowth Chang; collection and/or assembly of data: Shang-Wen Chen, Wei-Chih Shen, William Tzu-Liang Chen, Te-Chun Hsieh, Kuo-Yang Yen, Jan-Gowth Chang, Chia-Hung Kao; data analysis and interpretation: Shang-Wen Chen, Wei-Chih Shen, William Tzu-Liang Chen, Te-Chun Hsieh, Kuo-Yang Yen, Jan-Gowth Chang, Chia-Hung Kao; manuscript preparation: Shang-Wen Chen, Wei-Chih Shen, William Tzu-Liang Chen, Te-Chun Hsieh, Kuo-Yang Yen, Jan-Gowth Chang, Chia-Hung Kao; final approval of manuscript: Shang-Wen Chen, Wei-Chih Shen, William Tzu-Liang Chen, Te-Chun Hsieh, Kuo-Yang Yen, Jan-Gowth Chang, Chia-Hung Kao. The guarantor of the paper, taking responsibility for the integrity of the work as a whole, from inception to published article: Chia-Hung Kao.

Corresponding author

Correspondence to Chia-Hung Kao.

Ethics declarations

The study was approved by the local institutional review board (certificate numbers CMUH102-REC2-74 and DMR99-IRB-010-1).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

The IRB also specifically waived the consent requirement.

Electronic supplementary material

ESM 1

(PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SW., Shen, WC., Chen, W.TL. et al. Metabolic Imaging Phenotype Using Radiomics of [18F]FDG PET/CT Associated with Genetic Alterations of Colorectal Cancer. Mol Imaging Biol 21, 183–190 (2019). https://doi.org/10.1007/s11307-018-1225-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1225-8

Key words

Navigation