Skip to main content
Log in

Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea syndrome (OSAS) has been recognized as an important risk factor for cardiovascular morbidity and mortality. However, the underlying mechanisms are poorly understood. Present study aimed to investigate the role of NF-κB-dependent inflammation pathways in pathophysiological responses of cardiovascular system in OSAS.

Methods

Thirty male specific pathogen-free (SPF) Sprague-Dawley rats were randomly assigned to normoxia (N) group, continual hypoxia (CH) group, and intermittent hypoxia (IH) group (n = 10) and were exposed to N (21 % O2), CH (8 % O2), or IH (6–11 % O2 for 10 s and 21 % O2 for 80 s in every 90 s) for 8 h/day for 35 days. The hemodynamic and pathomorphologic effects of IH and CH exposure were investigated as well as the expression of NF-κB-dependent inflammation factors.

Results

Chronic IH or CH significantly increased mean pulmonary arterial pressure (mPAP) in rats, while no significant changes occurred in mean carotid arterial pressure (mCAP). The ratio of right ventricle (RV) to left ventricle (LV) + septum (S) was significantly increased by both IH and CH, suggesting RV hypertrophy was induced by IH or CH. Elastic fiber staining showed an irregular pattern of elastic fiber distribution after hypoxia, and aortic tunica media thickness was increased. Both chronic IH and CH upregulated the expressions of transcription factor NF-κB and related pro-inflammatory cytokines and adhesion molecules.

Conclusions

The current study expands our understanding that both IH and CH could activate the expression of NF-κB and related inflammatory factors as well as cause pathophysiologic damage to the cardiovascular system in OSAS. All these results provide further support to an emerging hypothesis that activation of NF-κB-dependent inflammation may play a central role in the pathophysiology of cardiovascular dysfunction in OSAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mbata G, Chukwuka J (2013) Obstructive sleep apnea hypopnea syndrome. Arch Med Health Sci 2(1):74–77

    Article  Google Scholar 

  2. McNicholas W, Bonsignore M (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29(1):156–178

    Article  CAS  PubMed  Google Scholar 

  3. Foster GE, Poulin MJ, Hanly PJ (2007) Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol 92(1):51–65

    Article  PubMed  Google Scholar 

  4. Campen M, Shimoda L, O’Donnell C (2005) Acute and chronic cardiovascular effects of intermittent hypoxia in C57BL/6J mice. J Appl Physiol 99(5):2028–2035

    Article  CAS  PubMed  Google Scholar 

  5. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112(17):2660–2667

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher EC (2001) Physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol 90(4):1600–1605

    CAS  PubMed  Google Scholar 

  7. de Frutos S, Duling L, Alò D, Berry T, Jackson-Weaver O, Walker M, Kanagy N, Bosc LG (2008) NFATc3 is required for intermittent hypoxia-induced hypertension. Am J Physiol Heart Circ 294(5):H2382–H2390

    Article  Google Scholar 

  8. Arnaud C, Beguin PC, Lantuejoul S, Pepin J-L, Guillermet C, Pelli G, Burger F, Buatois V, Ribuot C, Baguet J-P (2011) The inflammatory preatherosclerotic remodeling induced by intermittent hypoxia is attenuated by RANTES/CCL5 inhibition. Am J Respir Crit Care Med 184(6):724–731

    Article  CAS  PubMed  Google Scholar 

  9. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-κB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343(2):591–596

    Article  CAS  PubMed  Google Scholar 

  10. Ryan S, Taylor C, McNicholas W (2009) Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax 64(7):631–636

    CAS  PubMed  Google Scholar 

  11. Bhattacharjee R, Kim J, Kheirandish‐Gozal L, Gozal D (2011) Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol 46(4):313–323

    Article  PubMed  Google Scholar 

  12. Kim J, Hakim F, Kheirandish-Gozal L, Gozal D (2011) Inflammatory pathways in children with insufficient or disordered sleep. Respir Physiol Neurobiol 178(3):465–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Garvey J, Taylor C, McNicholas W (2009) Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J 33(5):1195–1205

    Article  CAS  PubMed  Google Scholar 

  14. Htoo AK, Greenberg H, Tongia S, Chen G, Henderson T, Wilson D, Liu SF (2006) Activation of nuclear factor κB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breathing 10(1):43–50

    Article  PubMed  Google Scholar 

  15. Minoguchi K, Tazaki T, Yokoe T, Minoguchi H, Watanabe Y, Yamamoto M, Adachi M (2004) Elevated production of tumor necrosis factor-α by monocytes in patients with obstructive sleep apnea syndrome. Chest J 126(5):1473–1479

    Article  CAS  Google Scholar 

  16. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y (2003) Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol 94(1):179–184

    Article  CAS  PubMed  Google Scholar 

  17. Zoja C, Donadelli R, Colleoni S, Figliuzzi M, Bonazzola S, Morigi M, Remuzzi G (1998) Protein overload stimulates RANTES production by proximal tubular cells depending on NF-κB activation. Kidney Int 53(6):1608–1615

    Article  CAS  PubMed  Google Scholar 

  18. Zuckerbraun BS, Shiva S, Ifedigbo E, Mathier MA, Mollen KP, Rao J, Bauer PM, Choi JJ, Curtis E, Choi AM (2010) Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase–dependent nitric oxide generation. Circulation 121(1):98–109

    Article  CAS  PubMed  Google Scholar 

  19. Calhoun DA, Harding SM (2010) Sleep and hypertension. Chest J 138(2):434–443

    Article  Google Scholar 

  20. Gong Y, Fan X, Wu X, Hu L, Tang C, Pang Y, Qi Y (2007) Changes of intermedin/adrenomedullin 2 and its receptors in the right ventricle of rats with chronic hypoxic pulmonary hypertension. Sheng Li Xue Bao Acta Physiologica Sinica 59(2):210–214

    CAS  PubMed  Google Scholar 

  21. Peng P, Ly H, Li J, Fan R, Zhang SM, Wang YM, Hu YZ, Sun X, Kaye AD, Pei JM (2009) Distribution of κ-opioid receptor in the pulmonary artery and its changes during hypoxia. Anat Rec 292(7):1062–1067

    Article  Google Scholar 

  22. Li J, Zhang P, Zhang Q-y, Zhang S-m, Guo H-t, Bi H, Wang Y-m, Sun X, Liu J-c, Cheng L (2009) Effects of U50, 488H on hypoxia pulmonary hypertension and its underlying mechanism. Vasc Pharmacol 51(2):72–77

    Article  CAS  Google Scholar 

  23. Drager LF, Bortolotto LA, Lorenzi MC, Figueiredo AC, Krieger EM, Lorenzi-Filho G (2005) Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 172(5):613–618

    Article  PubMed  Google Scholar 

  24. Bagai K (2010) Obstructive sleep apnea, stroke, and cardiovascular diseases. Neurologist 16(6):329–339

    Article  PubMed  Google Scholar 

  25. Almendros I, Farré R, Torres M, Bonsignore MR, Dalmases M, Ramírez J, Navajas D, Montserrat JM (2011) Early and mid-term effects of obstructive apneas in myocardial injury and inflammation. Sleep Med 12(10):1037–1040

    Article  PubMed  Google Scholar 

  26. Yamauchi M, Tamaki S, Tomoda K, Yoshikawa M, Fukuoka A, Makinodan K, Koyama N, Suzuki T, Kimura H (2006) Evidence for activation of nuclear factor kappaB in obstructive sleep apnea. Sleep Breathing 10(4):189–193

    Article  PubMed  Google Scholar 

  27. Williams A, Scharf SM (2007) Obstructive sleep apnea, cardiovascular disease, and inflammation—is NF-κB the key? Sleep Breathing 11(2):69–76

    Article  PubMed  Google Scholar 

  28. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342(12):836–843

    Article  CAS  PubMed  Google Scholar 

  29. Nakakuki T, Ito M, Iwasaki H, Kureishi Y, Okamoto R, Moriki N, Kongo M, Kato S, Yamada N, Isaka N (2005) Rho/Rho-kinase pathway contributes to C-reactive protein–induced plasminogen activator inhibitor-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol 25(10):2088–2093

    Article  CAS  PubMed  Google Scholar 

  30. Monaco C, Paleolog E (2004) Nuclear factor κB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 61(4):671–682

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi M, Fujimoto K, Urushibata K, Takamizawa A, Kinoshita O, Kubo K (2006) Hypoxia-sensitive molecules may modulate the development of atherosclerosis in sleep apnoea syndrome. Respirology 11(1):24–31

    Article  PubMed  Google Scholar 

  32. Chin K, Nakamura T, Shimizu K, Mishima M, Nakamura T, Miyasaka M, Ohi M (2000) Effects of nasal continuous positive airway pressure on soluble cell adhesion molecules in patients with obstructive sleep apnea syndrome. Am J Med 109(7):562–567

    Article  CAS  PubMed  Google Scholar 

  33. Quercioli A, Mach F, Montecucco F (2010) Inflammation accelerates atherosclerotic processes in obstructive sleep apnea syndrome (OSAS). Sleep Breathing 14(3):261–269

    Article  PubMed  Google Scholar 

  34. Nelson PJ, Kim H, Manning W, Goralski T, Krensky A (1993) Genomic organization and transcriptional regulation of the RANTES chemokine gene. J Immunol 151(5):2601–2612

    CAS  PubMed  Google Scholar 

  35. Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T (1994) NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153(5):2052–2063

    CAS  PubMed  Google Scholar 

  36. Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TN, Salant DJ, Gutierrez-Ramos J-C (1997) RANTES and monocyte chemoattractant protein–1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 185(7):1371–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Koh SJ, Kim JY, Hyun YJ, Park SH, Chae JS, Park S, Kim J-S, Youn JC, Jang Y, Lee JH (2009) Association of serum RANTES concentrations with established cardiovascular risk markers in middle-aged subjects. Int J Cardiol 132(1):102–108

    Article  PubMed  Google Scholar 

  38. Borel J-C, Roux-Lombard P, Tamisier R, Arnaud C, Monneret D, Arnol N, Baguet J-P, Levy P, Pepin J-L (2009) Endothelial dysfunction and specific inflammation in obesity hypoventilation syndrome. PLoS One 4(8):e6733

    Article  PubMed Central  PubMed  Google Scholar 

  39. Feng J, Wu Q, Zhang D, Chen B (2012) Hippocampal impairments are associated with intermittent hypoxia of obstructive sleep apnea. Chin Med J 125(4):696–701

    PubMed  Google Scholar 

  40. Wu Q, Wang H-Y, Li J, Zhou P, Wang Q-L, Zhao L, Fan R, Wang Y-M, Xu X-Z, Yi D-H (2013) κ-opioid receptor stimulation improves endothelial function in hypoxic pulmonary hypertension. PLoS One 8(5):e60850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wenzhou Technology Project Foundation of China (No. Y20090125). The authors want to thank the teachers at the Department of Animal Experiment and Path Physiology for expert technical assistance, and the teachers and students who had participated in this study.

Conflict of interest

All coauthors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XM., Yao, D., Cai, XD. et al. Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats. Sleep Breath 19, 677–684 (2015). https://doi.org/10.1007/s11325-014-1075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-014-1075-9

Keywords

Navigation