Skip to main content

Advertisement

Log in

Obstructive sleep apnea syndrome: coagulation anomalies and treatment with continuous positive airway pressure

  • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Introduction

Obstructive sleep apnea syndrome (OSAS) is a highly prevalent sleep disorder associated with severe cardiovascular events, morbidity and mortality. Recent evidence has highlighted OSAS as an independent risk factor for an excessive platelet activation and arterial thrombosis, but the underlying mechanisms have not yet been determined. Studies in cell culture and animal models have significantly increased our understanding of the mechanisms of inflammation in OSAS. Hypoxia is a critical pathophysiological element that leads to an intense sympathetic activity, in association with systemic inflammation, oxidative stress and procoagulant activity. While platelet dysfunction and/or hypercoagulability play an important role in the pathogenesis of vascular disease, there are limited studies on the potential role of blood viscosity in the development of vascular disease in OSAS.

Conclusion

Further studies are required to determine the precise role of hypercoagulability in the cardiovascular pathogenesis of OSAS, particularly its interaction with oxidative stress, thrombotic tendency and endothelial dysfunction. Nasal continuous positive airway pressure (nCPAP), the gold standard treatment for OSAS, not only significantly reduced apnea-hypopnoea indices but also markers of hypercoagulability, thus representing a potential mechanisms by which CPAP reduces the rate of cardiovascular morbidity and mortality in OSAS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Engleman HM, Douglas NJ (2004) Sleepiness, cognitive function, and quality of life in obstructive sleep apnoea/hypopnoea syndrome. Thorax 59:618–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McNicholas WT, Bonsigore MR (2007) Management Committee of EU COST ACTION B26. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29:156–78

    Article  CAS  PubMed  Google Scholar 

  3. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V (2005) Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 353:2034–41

    Article  CAS  PubMed  Google Scholar 

  4. Dziewas R, Humpert M, Hopmann B, Kloska SP, Lüdemann P, Ritter M, Dittrich R, Ringelstein EB, Young P, Nabavi DG (2005) Increased prevalence of sleep apnea in patients with recurring ischemic stroke compared with first stroke victims. J Neurol 252:1394–8

    Article  PubMed  Google Scholar 

  5. Kendzerska T, Gershon AS, Hawker G, Leung RS, Tomlinson G (2014) Obstructive sleep apnea and risk of cardiovascular events and all-cause mortality: a decade-long historical cohort study. PLoS Med 11:e1001599. doi:10.1371/journal.pmed.1001599

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–53

    Article  PubMed  Google Scholar 

  7. Savransky V, Nanayakkara A, Li J, Bevans S, Smith PL, Rodriguez A, Polotsky VY (2007) Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med 175:1290–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drager LF, Bortolotto LA, Figueiredo AC, Krieger EM, Lorenzi GF (2007) Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 176:706–12

    Article  CAS  PubMed  Google Scholar 

  9. Eckert DJ, Malhotra A, Jordan AS (2009) Mechanisms of apnea. Prog Cardiovasc Dis 51:313–23. doi:10.1016/j.pcad.2008.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bagai K (2010) Obstructive sleep apnea, stroke, and cardiovascular diseases. Neurologist 16:329–39. doi:10.1097/NRL.0b013e3181f097cb

    Article  PubMed  Google Scholar 

  11. Fava C, Montagnana M, Favaloro EJ, Guidi GC, Lippi G (2011) Obstructive sleep apnea syndrome and cardiovascular diseases. Semin Thromb Hemost 37:280–97. doi:10.1055/s-0031-1273092

    Article  PubMed  Google Scholar 

  12. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T, American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, American Heart Association Stroke Council, American Heart Association Council on Cardiovascular Nursing, American College of Cardiology Foundation (2008) Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 118(10):1080–111. doi:10.1161/CIRCULATIONAHA.107.189375

    Article  PubMed  Google Scholar 

  13. Minoguchi K, Yokoe T, Tazaki T, Minoguchi H, Tanaka A, Oda N, Okada S, Ohta S, Naito H, Adachi M (2005) Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med 172:625–30

    Article  PubMed  Google Scholar 

  14. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–7

    Article  CAS  PubMed  Google Scholar 

  15. Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–84. doi:10.1183/09031936.00086608

    Article  CAS  PubMed  Google Scholar 

  16. Jelic S, Padeletti M, Kawut SM, Higgins C, Canfield SM, Onat D, Colombo PC, Basner RC, Factor P, LeJemtel TH (2008) Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 117:2270–8. doi:10.1161/CIRCULATIONAHA.107.741512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE, Sleep Heart Health Study Investigators (2004) Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 160:521–30

    Article  PubMed  Google Scholar 

  18. Blokhin IO, Lentz SR (2013) Mechanisms of thrombosis in obesity. Curr Opin Hematol 20:437–44. doi:10.1097/MOH.0b013e3283634443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davì G, Gresele P, Violi F, Basili S, Catalano M, Giammarresi C, Volpato R, Nenci GG, Ciabattoni G, Patrono C (1997) Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 96:69–75

    Article  PubMed  Google Scholar 

  20. Ryan S, McNicholas WT (2008) Intermittent hypoxia and activation of inflammatory molecular pathways in OSAS. Arch Physiol Biochem 114:261–6. doi:10.1080/13813450802307337

    Article  CAS  PubMed  Google Scholar 

  21. Taylor CT, Cummins EP (2009) The role of NF-kappaB in hypoxia-induced gene expression. Ann N Y Acad Sci 1177:178–84. doi:10.1111/j.1749-6632.2009.05024.x

    Article  CAS  PubMed  Google Scholar 

  22. Pignatelli P, De Biase L, Lenti L, Tocci G, Brunelli A, Cangemi R, Riondino S, Grego S, Volpe M, Violi F (2005) Tumor necrosis factor-alpha as trigger of platelet activation in patients with heart failure. Blood 106:1992–4

    Article  CAS  PubMed  Google Scholar 

  23. Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, Chatterjee T, Bajaj N, Sengupta S, Ganju L, Singh SB, Ashraf MZ (2014) Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood 123:1250–60. doi:10.1182/blood-2013-05-501924

    Article  CAS  PubMed  Google Scholar 

  24. Ten VS, Pinsky DJ (2002) Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Curr Opin Crit Care 8:242–50

    Article  PubMed  Google Scholar 

  25. Taylor CT, Kent BD, Crinion SJ, McNicholas WT, Ryan S (2014) Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression. Biochem Biophys Res Commun 447:660–5. doi:10.1016/j.bbrc.2014.04.062

    Article  CAS  PubMed  Google Scholar 

  26. Larsson PT, Wallén NH, Hjemdahl P (1994) Norepinephrine-induced human platelet activation in vivo is only partly counteracted by aspirin. Circulation 89:1951–7

    Article  CAS  PubMed  Google Scholar 

  27. Lévy P, Pépin JL, Arnaud C, Tamisier R, Borel JC, Dematteis M, Godin-Ribuot D, Ribuot C (2008) Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives. Eur Respir J 32:1082–95. doi:10.1183/09031936.00013308

    Article  PubMed  Google Scholar 

  28. Heinrich J, Balleisen L, Schulte H, Assmann G, van de Loo J (1994) Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 14:54–9

    Article  CAS  PubMed  Google Scholar 

  29. Robinson GV, Pepperell JC, Segal HC, Davies RJ, Stradling JR (2004) Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax 59:777–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hui DS, Ko FW, Fok JP, Chan MC, Li TS, Tomlinson B, Cheng G (2004) The effects of nasal continuous positive airway pressure on platelet activation in obstructive sleep apnea syndrome. Chest 125:1768–75

    Article  PubMed  Google Scholar 

  31. Akinnusi ME, Paasch LL, Szarpa KR, Wallace PK, El Solh AA (2009) Impact of nasal continuous positive airway pressure therapy on markers of platelet activation in patients with obstructive sleep apnea. Respiration 77:25–31. doi:10.1159/000158488

    Article  PubMed  Google Scholar 

  32. Bokinsky G, Miller M, Ault K, Husband P, Mitchell J (1995) Spontaneous platelet activation and aggregation during obstructive sleep apnea and its response to therapy with nasal continuous positive airway pressure. A preliminary investigation. Chest 108:625–30

    Article  CAS  PubMed  Google Scholar 

  33. Phillips CL, McEwen BJ, Morel-Kopp MC, Yee BJ, Sullivan DR, Ward CM, Tofler GH, Grunstein RR (2012) Effects of continuous positive airway pressure on coagulability in obstructive sleep apnoea: a randomised, placebo-controlled crossover study. Thorax 67:639–44. doi:10.1136/thoraxjnl-2011-200874

    Article  PubMed  Google Scholar 

  34. von Känel R, Loredo JS, Ancoli-Israel S, Dimsdale JE (2006) Association between sleep apnea severity and blood coagulability: treatment effects of nasal continuous positive airway pressure. Sleep Breath 10:139–46

    Article  Google Scholar 

  35. Toukh M, Pereira EJ, Falcon BJ, Liak C, Lerner M, Hopman WM, Iscoe S, Fitzpatrick MF, Othman M (2012) CPAP reduces hypercoagulability, as assessed by thromboelastography, in severe obstructive sleep apnoea. Respir Physiol Neurobiol 183:218–23. doi:10.1016/j.resp.2012.06.022

    Article  PubMed  Google Scholar 

  36. Saarelainen S, Hasan J, Siitonen S, Seppälä E (1996) Effect of nasal CPAP treatment on plasma volume, aldosterone and 24-h blood pressure in obstructive sleep apnoea. J Sleep Res 5:181–5

    Article  CAS  PubMed  Google Scholar 

  37. Reinhart WH, Oswald J, Walter R, Kuhn M (2002) Blood viscosity and platelet function in patients with obstructive sleep apnea syndrome treated with nasal continuous positive airway pressure. Clin Hemorheol Microcirc 27:201–7

    CAS  PubMed  Google Scholar 

  38. Tazbirek M, Slowinska L, Skoczynski S, Pierzchala W (2009) Short-term continuous positive airway pressure therapy reverses the pathological influence of obstructive sleep apnea on blood rheology parameters. Clin Hemorheol Microcirc 41:241–9. doi:10.3233/CH-2009-1175

    PubMed  Google Scholar 

  39. Cross MD, Mills NL, Al-Abri M, Riha R, Vennelle M, Mackay TW, Newby DE, Douglas NJ (2008) Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial. Thorax 63:578–83. doi:10.1136/thx.2007.081877

    Article  CAS  PubMed  Google Scholar 

  40. Shitrit D, Peled N, Shitrit AB, Meidan S, Bendayan D, Sahar G, Kramer MR (2005) An association between oxygen desaturation and D-dimer in patients with obstructive sleep apnea syndrome. Thromb Haemost 94:544–7

    CAS  PubMed  Google Scholar 

  41. von Känel R, Loredo JS, Powell FL, Adler KA, Dimsdale JE (2005) Short-term isocapnic hypoxia and coagulation activation in patients with sleep apnea. Clin Hemorheol Microcirc 33:369–77

    Google Scholar 

  42. Steiner S, Jax T, Evers S, Hennersdorf M, Schwalen A, Strauer BE (2005) Altered blood rheology in obstructive sleep apnea as a mediator of cardiovascular risk. Cardiology 104:92–6

    Article  PubMed  Google Scholar 

  43. Kaditis AG, Alexopoulos EI, Kalampouka E, Kostadima E, Angelopoulos N, Germenis A, Zintzaras E, Gourgoulianis K (2004) Morning levels of fibrinogen in children with sleep-disordered breathing. Eur Respir J24:790–7

    Article  Google Scholar 

  44. Shimizu M, Kamio K, Haida M, Ono Y, Miyachi H, Yamamoto M, Shinohara Y, Ando Y (2002) Platelet activation in patients with obstructive sleep apnea syndrome and effects of nasal-continuous positive airway pressure. Tokai J Exp Clin Med 27:107–12

    PubMed  Google Scholar 

  45. Liak C, Fitzpatrick M (2011) Coagulability in obstructive sleep apnea. Can Respir J 18:338–48

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guardiola JJ, Matheson PJ, Clavijo LC, Wilson MA, Fletcher EC (2001) Hypercoagulability in patients with obstructive sleep apnea. Sleep Med 2:517–23

    Article  CAS  PubMed  Google Scholar 

  47. Choi JB, Loredo JS, Norman D, Mills PJ, Ancoli-Israel S, Ziegler MG, Dimsdale JE (2006) Does obstructive sleep apnea increase hematocrit? Sleep Breath 10:155–60

    Article  PubMed  Google Scholar 

  48. Krieger J, Sforza E, Delanoe C, Petiau C (1992) Decrease in haematocrit with continuous positive airway pressure treatment in obstructive sleep apnoea patients. Eur Respir J 5:228–33

    CAS  PubMed  Google Scholar 

  49. Krieger J, Sforza E, Barthelmebs M, Imbs JL, Kurtz D (1990) Overnight decrease in hematocrit after nasal CPAP treatment in patients with OSA. Chest 97:729–30

    Article  CAS  PubMed  Google Scholar 

  50. Wright J, White J (2000) Continuous positive airways pressure for obstructive sleep apnoea. Cochrane Database Syst Rev 2:CD001106

    PubMed  Google Scholar 

  51. Leech JA, Onal E, Lopata M (1992) Nasal CPAP continues to improve sleep-disordered breathing and daytime oxygenation over long-term follow-up of occlusive sleep apnea syndrome. Chest 102:1651–5

    Article  CAS  PubMed  Google Scholar 

  52. Dikmenoğlu N, Ciftçi B, Ileri E, Güven SF, Seringeç N, Aksoy Y, Ercil D (2006) Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome. Sleep Med 7:255–61

    Article  PubMed  Google Scholar 

  53. Toraldo DM, Peverini F, De Benedetto M, De Nuccio F (2013) Obstructive sleep apnea syndrome: blood viscosity, blood coagulation abnormalities, and early atherosclerosis. Lung 191:1–7. doi:10.1007/s00408-012-9427-3

    Article  CAS  PubMed  Google Scholar 

  54. von Känel R, Dimsdale JE (2003) Hemostatic alterations in patients with obstructive sleep apnea and the implications for cardiovascular disease. Chest 124:1956–67

    Article  Google Scholar 

  55. Nobili L, Schiavi G, Bozano E, De Carli F, Ferrillo F, Nobili F (2000) Morning increase of whole blood viscosity in obstructive sleep apnea syndrome. Clin Hemorheol Microcirc 22:21–7

    CAS  PubMed  Google Scholar 

  56. Takahashi K, Chin K, Nakamura H, Morita S, Sumi K, Oga T, Matsumoto H, Niimi A, Fukuhara S, Yodoi J, Mishima M (2008) Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal 10:715–26. doi:10.1089/ars.2007.1949

    Article  CAS  PubMed  Google Scholar 

  57. Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC (1995) Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 332:635–41

    Article  CAS  PubMed  Google Scholar 

  58. Ghoshal K, Bhattacharyya M (2014) Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. ScientificWorldJournal 2014:781857. doi:10.1155/2014/781857

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maruyama K, Morishita E, Sekiya A, Omote M, Kadono T, Asakura H, Hashimoto M, Kobayashi M, Nakatsumi Y, Takada S, Ohtake S (2012) Plasma levels of platelet-derived microparticles in patients with obstructive sleep apnea syndrome. J Atheroscler Thromb 19:98–104

    Article  CAS  PubMed  Google Scholar 

  60. Toraldo DM, De Nuccio F, Mauro S, Spirito F, Distante A, Nicolardi G (2013) Frequency of human leukocyte antigens, plasminogen activator inhibitor-1 and methylenetetrahydrofolate reductase gene polymorphisms in obstructive sleep apnea-hypopnea syndrome with or without pulmonary artery hypertension. J Sleep Disorders Ther 2(131):2013

    Google Scholar 

  61. El Solh AA, Akinnusi ME, Berim IG, Peter AM, Paasch LL, Szarpa KR (2008) Hemostatic implications of endothelial cell apoptosis in obstructive sleep apnea. Sleep Breath 12:331–7. doi:10.1007/s11325-008-0182-x

    Article  PubMed  Google Scholar 

  62. Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ (2006) Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev 19:CD001106

    Google Scholar 

  63. Takano K, Yamaguchi T, Uchida K (1992) Markers of a hypercoagulable state following acute ischemic stroke. Stroke 23:194–8

    Article  CAS  PubMed  Google Scholar 

  64. Chin K, Kita H, Noguchi T, Otsuka N, Tsuboi T, Nakamura T, Shimizu K, Mishima M, Ohi M (1998) Improvement of factor VII clotting activity following long-term NCPAP treatment in obstructive sleep apnoea syndrome. QJM 91:627–33

    Article  CAS  PubMed  Google Scholar 

  65. Grundt H, Nilsen DW, Hetland Ø, Valente E, Fagertun HE (2004) Activated factor 12 (FXIIa) predicts recurrent coronary events after an acute myocardial infarction. Am Heart J 147:260–6

    Article  CAS  PubMed  Google Scholar 

  66. Geiser T, Buck F, Meyer BJ, Bassetti C, Haeberli A, Gugger M (2002) In vivo platelet activation is increased during sleep in patients with obstructive sleep apnea syndrome. Respiration 69:229–34

    Article  PubMed  Google Scholar 

  67. Ma J, Hennekens CH, Ridker PM, Stampfer MJ (1999) A prospective study of fibrinogen and risk of myocardial infarction in the Physicians’ Health Study. J Am Coll Cardiol 33:1347–52

    Article  CAS  PubMed  Google Scholar 

  68. Rångemark C, Hedner JA, Carlson JT, Gleerup G, Winther K (1995) Platelet function and fibrinolytic activity in hypertensive and normotensive sleep apnea patients. Sleep 18:188–94

    PubMed  Google Scholar 

  69. Rao M, Rajda G, Uppuluri S, Beck GR, Liu L, Bisognano JD (2010) The role of continuous positive airway pressure in the treatment of hypertension in patients with obstructive sleep apnea-hypoapnea syndrome: a review of randomized trials. Rev Recent Clin Trials 5:35–42

    Article  PubMed  Google Scholar 

  70. Hui DS, Shang Q, Ko FW, Ng SS, Szeto CC, Ngai J, Tung AH, To KW, Chan TO, Yu CM (2012) A prospective cohort study of the long-term effects of CPAP on carotid artery intima-media thickness in obstructive sleep apnea syndrome. Respir Res 13:22. doi:10.1186/1465-9921-13-22

    Article  PubMed  PubMed Central  Google Scholar 

  71. Oga T, Chin K, Tabuchi A, Kawato M, Morimoto T, Takahashi K, Handa T, Takahashi K, Taniguchi R, Kondo H, Mishima M, Kita T, Horiuchi H (2009) Effects of obstructive sleep apnea with intermittent hypoxia on platelet aggregability. J Atheroscler Thromb 16:862–9

    Article  PubMed  Google Scholar 

  72. Banner DW, D'Arcy A, Chène C, Winkler FK, Guha A, Konigsberg WH, Nemerson Y, Kirchhofer D (1996) The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 380:41–6

    Article  CAS  PubMed  Google Scholar 

  73. Hayashi M, Fujimoto K, Urushibata K, Takamizawa A, Kinoshita O, Kubo K (2006) Hypoxia-sensitive molecules may modulate the development of atherosclerosis in sleep apnoea syndrome. Respirology 11:24–31

    Article  PubMed  Google Scholar 

  74. Yan SF, Mackman N, Kisiel W, Stern DM, Pinsky DJ (1999) Hypoxia/hypoxemia-induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler Thromb Vasc Biol 19:2029–35

    Article  CAS  PubMed  Google Scholar 

  75. Bach RR (1998) Mechanism of tissue factor activation on cells. Blood Coagul Fibrinolysis 9(Suppl 1):S37–43

    CAS  PubMed  Google Scholar 

  76. Toraldo DM, De Nuccio F, Nicolardi G (2010) Fixed-pressure nCPAP in patients with obstructive sleep apnea (OSA) syndrome and chronic obstructive pulmonary disease (COPD): a 24-month follow-up study. Sleep Breath 14:115–23. doi:10.1007/s11325-009-0291-1

    Article  PubMed  Google Scholar 

  77. Barbieri SS, Amadio P, Gianellini S, Tarantino E, Zacchi E, Veglia F, Howe LR, Weksler BB, Mussoni L, Tremoli E (2012) Cyclooxygenase-2-derived prostacyclin regulates arterial thrombus formation by suppressing tissue factor in a sirtuin-1-dependent-manner. Circulation 126:1373–84. doi:10.1161/CIRCULATIONAHA.112.097295

    Article  CAS  PubMed  Google Scholar 

  78. Haus E (2007) Chronobiology of hemostasis and inferences for the chronotherapy of coagulation disorders and thrombosis prevention. Adv Drug Deliv Rev 59:966–84

    Article  CAS  PubMed  Google Scholar 

  79. Goldberg RJ, Brady P, Muller JE, Chen ZY, de Groot M, Zonneveld P, Dalen JE (1990) Time of onset of symptoms of acute myocardial infarction. Am J Cardiol 66:140–4

    Article  CAS  PubMed  Google Scholar 

  80. von Känel R, Natarajan L, Ancoli-Israel S, Mills PJ, Wolfson T, Gamst AC, Loredo JS, Dimsdale JE (2013) Effect of continuous positive airway pressure on day/night rhythm of prothrombotic markers in obstructive sleep apnea. Sleep Med 14:58–65. doi:10.1016/j.sleep.2012.07.009

    Article  Google Scholar 

  81. Felix HC, Bradway C, Chisholm L, Pradhan R, Weech-Maldonado R (2015) Prevalence of moderate to severe obesity among U.S. nursing home residents, 2000–2010. Res Gerontol Nurs 13:1–6. doi:10.3928/19404921-20150223-01

    Google Scholar 

  82. Fontaine KR, Barofsky I (2001) Obesity and health-related quality of life. Obes Rev 2:173–82

    Article  CAS  PubMed  Google Scholar 

  83. Lyon CJ, Law RE, Hsueh WA (2003) Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 144:2195–200

    Article  CAS  PubMed  Google Scholar 

  84. Wilsmore BR, Grunstein RR, Fransen M, Woodward M, Norton R, Ameratunga S (2012) Sleep, blood pressure and obesity in 22,389 New Zealanders. Intern Med J 42:634–41. doi:10.1111/j.1445-5994.2012.02753.x

    Article  CAS  PubMed  Google Scholar 

  85. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217–39

    Article  PubMed  Google Scholar 

  86. Loube DI, Loube AA, Mitler MM (1994) Weight loss for obstructive sleep apnea: the optimal therapy for obese patients. J Am Diet Assoc 94:1291–5

    Article  CAS  PubMed  Google Scholar 

  87. Sands SA, Eckert DJ, Jordan AS, Edwards BA, Owens RL, Butler JP, Schwab RJ, Loring SH, Malhotra A, White DP, Wellman A (2014) Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am J Respir Crit Care Med 190:930–7. doi:10.1164/rccm.201404-0783OC

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wolf J, Lewicka J, Narkiewicz K (2007) Obstructive sleep apnea: an update on mechanisms and cardiovascular consequences. Nutr Metab Cardiovasc Dis 17:233–40

    Article  PubMed  Google Scholar 

  89. Pillar G, Shehadeh N (2008) Abdominal fat and sleep apnea: the chicken or the egg? Diabetes Care 31(Suppl 2):S303–9. doi:10.2337/dc08-s272

    Article  PubMed  Google Scholar 

  90. Pendlebury ST, Pépin JL, Veale D, Lévy P (1997) Natural evolution of moderate sleep apnoea syndrome: significant progression over a mean of 17 months. Thorax 52:872–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sforza E, Addati G, Cirignotta F, Lugaresi E (1994) Natural evolution of sleep apnoea syndrome: a five year longitudinal study. Eur Respir J 7:1765–70

    Article  CAS  PubMed  Google Scholar 

  92. Kim NH, Lee SK, Eun CR, Seo JA, Kim SG, Choi KM, Baik SH, Choi DS, Yun CH, Kim NH, Shin C (2013) Short sleep duration combined with obstructive sleep apnea is associated with visceral obesity in Korean adults. Sleep 36:723–9. doi:10.5665/sleep.2636

    PubMed  PubMed Central  Google Scholar 

  93. Chen X, Pensuksan WC, Lohsoonthorn V, Lertmaharit S, Gelaye B, Williams MA (2014) Obstructive sleep apnea and multiple anthropometric indices of general obesity and abdominal obesity among young adults. Int J Soc Sci Stud 2:89–99

    PubMed  PubMed Central  Google Scholar 

  94. Morange PE, Alessi MC (2013) Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost 110:669–80. doi:10.1160/TH13-01-0075

    Article  CAS  PubMed  Google Scholar 

  95. Barceló A, Piérola J, de la Peña M, Esquinas C, Sanchez-de la Torre M, Ayllón O, Alonso A, Agusti AG, Barbè F (2012) Day-night variations in endothelial dysfunction markers and haemostatic factors in sleep apnoea. Eur Respir J 39:913–8. doi:10.1183/09031936.00039911

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco De Nuccio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toraldo, D.M., De Benedetto, M., Scoditti, E. et al. Obstructive sleep apnea syndrome: coagulation anomalies and treatment with continuous positive airway pressure. Sleep Breath 20, 457–465 (2016). https://doi.org/10.1007/s11325-015-1227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-015-1227-6

Keywords

Navigation