Skip to main content
Log in

Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models, unfolding models, latent class models with random effects, multilevel latent class models, models with log-normal latent variables, and zero-inflated Poisson models with random effects. Some of the ideas are illustrated by estimating an unfolding model for attitudes to female work participation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allison, P.D. (1982). Discrete time methods for the analysis of event histories. In S. Leinhardt (Ed.), Sociological methodology 1982. San Francisco: Jossey-Bass.

  • Allison, P.D. (1987). Introducing a disturbance into logit and probit regression models. Sociological Methods & Research, 15, 355–374.

    Article  Google Scholar 

  • Allison, P.D., & Christakis, N.A. (1994). Logit models for sets of ranked items. In P.V. Marsden (Ed.), Sociological methodology 1994 (pp. 199–228). Oxford: Blackwell.

    Google Scholar 

  • Andrich, D. (1989). A probabilistic item response theory model for unfolding preference data. Applied Psychological Measurement, 13, 193–216.

    Article  Google Scholar 

  • Andrich, D. (1995). Hyperbolic cosine latent trait models for unfolding direct-responses and pairwise preferences. Applied Psychological Measurement, 19, 269–290.

    Article  Google Scholar 

  • Andrich, D. (1996). A hyperbolic cosine latent trait model for unfolding polytomous responses: Reconciling Thurstone and Likert methodologies. British Journal of Mathematical and Statistical Psychology, 49, 347–365.

    Google Scholar 

  • Andrich, D., & Luo, G. (1993). A hyperbolic cosine latent trait model for unfolding dichotomous single stimulus responses. Applied Psychological Measurement, 17, 253–276.

    Article  Google Scholar 

  • Bartholomew, D.J., & Knott, M. (1999). Latent variable models and factor analysis. London: Arnold.

    Google Scholar 

  • Birnbaum, A. (1968). Test scores, sufficient statistics, and the information structures of tests. In F.M. Lord, & M.R. Novick (Eds.), Statistical theories of mental test scores (pp. 425–435). Reading, MA: Addison-Wesley.

  • Böckenholt, U. (2001). Mixed-effects analyses of rank-ordered data. Psychometrika, 66, 45–62.

    Article  Google Scholar 

  • Böckenholt, U., & van der Heijden, P.G.M. (2007). Item randomized-response models for measuring noncompliance: Risk-return perceptions, social influences, and self-protective responses. Psychometrika, 72, DOI: 10.1007/s11336-005-1495-y.

  • Breslow, N.E., & Clayton, D.G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9–25.

    Article  Google Scholar 

  • Candy, S.G. (1997). Estimation in forest yield models using composite link functions with random effects. Biometrics, 53, 146–160.

    Article  Google Scholar 

  • Chapman, R.G., & Staelin, R. (1982). Exploiting rank ordered choice set data within the stochastic utility model. Journal of Marketing Research, 14, 288–301.

    Article  Google Scholar 

  • Chen, Z., & Kuo, L. (2001). A note on the estimation of the multinomial logit model with random effects. The American Statistician, 55, 89–95.

    Article  Google Scholar 

  • Clayton, D.G. (1988). The analysis of event history data: A review of progress and outstanding problems. Statistics in Medicine, 7, 819–841.

    Article  PubMed  Google Scholar 

  • Clayton, D.G., Spiegelhalter, D., Dunn, G., & Pickles, A. (1998). Analysis of longitudinal binary data from multiphase sampling. Journal of the Royal Statistical Society, Series B, 60, 71–77.

    Google Scholar 

  • Coombs, C.H. (1964). A theory of data. New York: Wiley.

    Google Scholar 

  • Cox, C. (1984). Generalized linear models—The missing link. Journal of the Royal Statistical Society, Series C, 33, 18–24.

    Google Scholar 

  • Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society, Series B, 34, 187–203.

    Google Scholar 

  • Davis, J.A., Smith, T.W., & Marsden, P.V. (2003). General social surveys, 1972–2002 [Cumulative File]. Ann Arbor, MI: ICPSR [Distributor].

  • Dayton, C.M., & MacReady, G.B. (1988). Concomitant variable latent class models. Journal of the American Statistical Association, 83, 173–178.

    Article  Google Scholar 

  • De Boeck, P., & Wilson, M. (Eds.) (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.

  • DeSarbo, W.S., & Hoffman, D.L. (1986). Simple unweighted unfolding threshold models for the spatial representation of binary choice data. Applied Psychological Measurement, 10, 247–264.

    Article  Google Scholar 

  • Eilers, P.H.C., & Borgdorff, M.W. (2004). Modeling and correction of digit preference in tuberculin surveys. The International Journal of Tubercolosis and Lung Disease, 8, 232–239.

    Google Scholar 

  • Engel, R. (1993). On the analysis of grouped extreme value data with GLIM. Journal of the Royal Statistical Society, Series C, 42, 633–640.

    Google Scholar 

  • Espeland, M.A., & Hui, S.L. (1987). A general approach to analyzing epidemiologic data that contain misclassification errors. Biometrics, 43, 1001–1012.

    Article  PubMed  Google Scholar 

  • Fielding, A. (2003). Ordered category responses and random effects in multilevel and other complex structures. In S.P. Reise, & N. Duan (Eds.), Multilevel modeling. Methodological advances, issues, and applications (pp. 181–208). Mahwah, NJ: Erlbaum.

  • Finney, D.J. (1971). Probit analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fox, J.P. (2005). Randomized item response theory models. Journal of Educational and Behavioral Statistics, 30, 1–24.

    Article  Google Scholar 

  • Fox, J.P., & Glas, C.A.W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 271–288.

    Article  Google Scholar 

  • Goldstein, H. (2003). Multilevel statistical models (3rd ed.). London: Arnold.

  • Goldstein, H., & McDonald, R.P. (1988). A general model for the analysis of multilevel data. Psychometrika, 53, 455–467.

    Article  Google Scholar 

  • Haberman, S.J. (1979). Analysis of qualitative data: New developments (Vol. 2). New York: Academic Press.

  • Hall, D.B. (2000). Zero-inflated Poisson and binomial regression with random effects: A case study. Biometrics, 56, 1030–1039.

    Article  PubMed  Google Scholar 

  • Heckman, J.J., & Singer, B. (1984). A method of minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica, 52, 271–320.

    Article  Google Scholar 

  • Heisterkamp, S.H., van Houwelingen, J.C., & Downs, A.M. (1999). Empirical Bayesian estimators for a Poisson process propagated in time. Biometrical Journal, 41, 385–400.

    Article  Google Scholar 

  • Hoijtink, H. (1990). A latent trait model for dichotomous choice data. Psychometrika, 55, 641–656.

    Article  Google Scholar 

  • Holford, T.R. (1976). Life tables with concomitant variables. Biometrics, 32, 587–597.

    Article  PubMed  Google Scholar 

  • Jansen, J. (1992). Statistical analysis of threshold data from experiments with nested errors. Computational Statistics & Data Analysis, 13, 319–330.

    Article  Google Scholar 

  • Johnson, M.S. (2006). Nonparametric estimation of item and respondent locations from unfolding-type items. Psychometrika, 71, 257–279.

    Article  Google Scholar 

  • Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457–474.

    Article  Google Scholar 

  • Läärä, E., & Matthews, J.N.S. (1985). The equivalence of two models for ordinal data. Biometrika, 72, 206–207.

    Google Scholar 

  • Laird, N.M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 805–811.

    Article  Google Scholar 

  • Lambert, D. (1992). Zero-inflated Poisson-regression with an application to defects in manufacturing. Technometrics, 34, 1–14.

    Article  Google Scholar 

  • Lee, S.-Y., & Song, X.-Y. (2004). Maximum likelihood analysis of a general latent variable model with hierarchically mixed data. Biometrics, 60, 624–636.

    Article  PubMed  Google Scholar 

  • Luce, R.D. (1959). Individual choice behavior. New York: Wiley.

    Google Scholar 

  • Magder, S.M., & Hughes, J.P. (1997). Logistic regression when the outcome is measured with uncertainty. American Journal of Epidemiology, 146, 195–203.

    PubMed  Google Scholar 

  • McCullagh, P., & Nelder, J.A. (1989). Generalized linear models (2nd ed.). London: Chapman & Hall.

  • Muthén, B.O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557–585.

    Article  Google Scholar 

  • Muthén, B.O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81–117.

    Article  Google Scholar 

  • Muthén, B.O., & Masyn, K. (2005). Dicrete-time survival mixture analysis. Journal of Educational and Behavioral Statistics, 30, 27–58.

    Article  Google Scholar 

  • Neuhaus, J.M. (1999). Bias and efficiency loss due to misclassified responses in binary regression. Biometrika, 86, 843–855.

    Article  Google Scholar 

  • Noël, Y. (1999). Recovering unimodal latent patterns of change by unfolding analysis: Application to smoking cessation. Psychological Methods, 4, 173–191.

    Article  Google Scholar 

  • Palmgren, J. (1981). The Fisher information matrix for log linear models arguing conditionally on observed explanatory variables. Biometrika, 68, 563–566.

    Google Scholar 

  • Plackett, R.L. (1975). The analysis of permutations. Journal of the Royal Statistical Society, Series C, 24, 193–202.

    Google Scholar 

  • Qu, Y., Tan, M., & Kutner, M.H. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics, 52, 797–810.

    Article  PubMed  Google Scholar 

  • Rabe-Hesketh, S., & Skrondal, A. (2005). Multilevel and longitudinal modeling using Stata. College Station, TX: Stata Press.

    Google Scholar 

  • Rabe-Hesketh, S., & Skrondal, A. (2006). Multilevel modeling of complex survey data. Journal of the Royal Statistical Society, Series A, 116, 805–827.

    Google Scholar 

  • Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2003). Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statistical Modelling, 3, 215–232.

    Article  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004a). Generalized multilevel structural equation modeling. Psychometrika, 69, 167–190.

    Article  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004b). GLLAMM manual. Technical report 160. U.C. Berkeley Division of Biostatistics Working Paper Series. Downloadable from http://www.bepress.com/ucbbiostat/paper160/.

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301–323.

    Article  Google Scholar 

  • Rabe-Hesketh, S., Yang, S., & Pickles, A. (2001). Multilevel models for censored and latent responses. Statistical Methods in Medical Research, 10, 409–427.

    Article  PubMed  Google Scholar 

  • Rijmen, F., Tuerlinckx, F., De Boeck, P., & Kuppens, P. (2003). A nonlinear mixed model framework for item response theory. Psychological Methods, 8, 185–205.

    Article  PubMed  Google Scholar 

  • Rindskopf, D. (1992). A general approach to categorical data analysis with missing data, using generalized linear models with composite links. Psychometrika, 57, 29–42.

    Article  Google Scholar 

  • Roberts, J.S., & Laughlin, J.E. (1996). A unidimensional item response model for unfolding responses from a graded disagree–agree response scale. Applied Psychological Measurement, 20, 231–255.

    Article  Google Scholar 

  • Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometric Monograph, Vol. 17. Bowling Green, OH: The Psychometric Society.

  • Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267–287.

    Article  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004a). Generalised linear latent and mixed models with composite links and exploded likelihoods. In A. Biggeri, E. Dreassi, C. Lagazio, & M. Marchi (Eds.), 19th International workshop on statistical modeling (pp. 27–29). Florence: Firenze University Press.

  • Skrondal, A., & Rabe-Hesketh, S. (2004b). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, FL: Chapman & Hall/CRC.

  • Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408.

    Article  Google Scholar 

  • Terza, J.V. (1985). Ordinal probit: A generalization. Communications in Statistics, Theory and Methods, 14, 1–11.

    Google Scholar 

  • Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567–577.

    Article  Google Scholar 

  • Thompson, R., & Baker, R.J. (1981). Composite link functions in generalized linear models. Journal of the Royal Statistical Society, Series C, 30, 125–131.

    Google Scholar 

  • Thurstone, L.L. (1928). Attitudes can be measured. American Journal of Sociology, 33, 529–554.

    Article  Google Scholar 

  • Tranmer, M., Pickles, A., Fieldhouse, E., Elliot, M., Dale, A., Brown, M., Martin, D., Steel, D., & Gardiner, C. (2005). The case for small area microdata. Journal of the Royal Statistical Society, Series A, 168, 29–39.

    Google Scholar 

  • Verhelst, N.D., & Verstralen, H.H.F.M. (1993). A stochastic unfolding model derived from the partial credit model. Kwantitative Methoden, 42, 73–92.

    Google Scholar 

  • Vermunt, J.K. 1997. Log-linear models for event histories. Thousand Oaks, CA: Sage.

  • Vermunt, J.K. (2001). The use of restricted latent class models for defining and testing nonparametric item response theory models. Applied Psychological Measurement, 25, 283–294.

    Article  Google Scholar 

  • Vermunt, J.K. (2003). Multilevel latent class models. In R.M. Stolzenberg (Ed.), Sociological methodology 2003 (Vol. 33, pp. 213–239). Oxford: Blackwell.

  • Vermunt, J.K. (in press). Latent class and finite mixture models for multilevel data sets. Statistical Methods in Medical Research.

  • Warner, S.L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60, 63–69.

    Article  PubMed  Google Scholar 

  • Whitehead, J. (1980). Fitting Cox’s regression model to survival data using GLIM. Journal of the Royal Statistical Society, Series C, 29, 269–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Rabe-Hesketh.

Additional information

We wish to thank The Research Council of Norway for a grant supporting our collaboration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabe-Hesketh, S., Skrondal, A. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods. Psychometrika 72, 123–140 (2007). https://doi.org/10.1007/s11336-006-1453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-006-1453-8

Key words

Navigation