Skip to main content
Log in

Measurement of personal and integrated exposure to particulate matter and co-pollutant gases

A panel study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Personal exposure measurement can serve as an effective tool to understand the effect of exposure to air pollutants. Alternatively, exposure assessment using pollutant concentrations in different microenvironments and accurate time–activity information for the subjects can provide good information regarding human integrated exposure. A panel of 18 healthy students of Indian Institute of Technology (IIT) Kanpur in the age group of 18 to 30 years participated in the personal exposure measurements for particulate matter, CO, NO2 and VOC during post-monsoon and pre-monsoon seasons. Overall, 432 h person exposure data was collected in this study. The major sources of particulate and gaseous co-pollutants were identified. These directly obtained personal exposure values were then compared to the indirectly estimated integrated exposure values. Personal and integrated exposures gave statistically similar results. Through this study, we have shown that integrated exposure values could closely estimate the personal exposure values for particulate matter that can significantly reduce time and cost involved in personal exposure studies. The lung parameters for all the subjects measured during the pre-monsoon and post-monsoon seasons showed statistically significant reduction during pre-monsoon. This was attributed to the high levels of coarse particles during pre-monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbey DE, Nishino N, McDonnell WF, Burchette RJ, Knutsen SF, Lawrence BW, Yang JX (1999) Long-term Iinhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med 159(2):373–382

    CAS  Google Scholar 

  • Ackermann-Liebrich U, Dietrich DF, Gemperli A, Liu LS, Schindler C, Gaspoz J et al (2007) Long-term effect of no2 exposure on heart rate variability: results of the sapaldia study. Epidemiology 18(5):S134–S135

    Google Scholar 

  • Anderson HR et al (2001) Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med 58:504–510

    Google Scholar 

  • Apte JS, Kirchstetter TW, Reich AH, Deshpande SJ, Kaushik G, Chel A, Marshall JD, Nazaroff WW (2011) Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmos Environ 45(26):4470–4480

    Article  CAS  Google Scholar 

  • Arif A, Shah S (2007) Association between personal exposure to volatile organic compounds and asthma among US adult population. Int Arch Occup Environ Health 80(8):711–719

    Article  CAS  Google Scholar 

  • Becker S et al (2003) Response of human alveolar macrophages to ultrafine, fine, and coarse urban air pollution particles. Exp Lung Res 29:29–44

    Google Scholar 

  • Beckx C, Int Panis L, Arentze T, Janssens D, Torfs R, Broekx S, Wets G (2009) A dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban area. Environ Impact Assess Rev 29(3):179–185

    Article  Google Scholar 

  • Brown SK (1999) Assessment of pollutant emissions from dry-process photocopiers. Indoor Air Int J Indoor Air Qual Clim 9(4):259–267

    Article  CAS  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199

    Article  CAS  Google Scholar 

  • Brunekreef B, Forsberg B (2005) Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J 26:309–318

    Google Scholar 

  • Burnett RT, Cakmak S, Brook JR, Krewski D. (1997) The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environ Health Persp 105:614–620

    Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM(1)) aerosol in Kanpur Region, India. Aerosol Air Qual Res 10(5):433–445

    CAS  Google Scholar 

  • Chen LH, Knutsen SF, Shavlik D, Beeson WL, Petersen F, Ghamsary M, Abbey D (2005) The association between fatal coronary heart disease and ambient particulate air pollution: are females at greater risk? Environ Heal Perspect 113(12):1723–1729

    Article  CAS  Google Scholar 

  • Chinnam N et al (2006) Dust events in Kanpur, northern India: chemical evidence for source and implications to radiative forcing. Geophys Res Lett 33

  • Clayton CA, Perritt RL, Pellizzari ED, Thomas KW, Whitmore RW, Wallace LA, Ozkaynak H, Spengler JD (1993) Particle Total Exposure Assessment Methodology (PTEAM) study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a southern California community. J Expo Anal Environ Epidemiol 3(2):227–250

    CAS  Google Scholar 

  • Devi JJ, Gupta T, Tripathi SN, Ujinwal KK (2009) Assessment of personal exposure to inhalable indoor and outdoor particulate matter for student residents of an academic campus (IIT-Kanpur). Inhal Toxicol 21(14):1208–1222

    Article  Google Scholar 

  • Dey S et al (2004) Influence of dust storms on the aerosol optical properties over the Indo‐Gangetic basin. J Geophys Res-Atmos 109

  • Dhondt S, Beckx C, Degraeuwe B, Lefebvre W, Kochan B, Bellemans T, Int Panis L, Macharis C, Putman K (2012) Health impact assessment of air pollution using a dynamic exposure profile: implications for exposure and health impact estimates. Environ Impact Assess Rev 36:42–51

    Article  Google Scholar 

  • Dockery D, Pope A, Xu X, Spengler J, Ware J, Fay M, Ferris B, Speizer F (1993) An association between air pollution and mortality in six U.S. cities. N Eng J Med 329(24):1753–1759

    Article  CAS  Google Scholar 

  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15(2):213–220

    Article  CAS  Google Scholar 

  • Dons E, Int Panis L, Van Poppel M, Theunis J, Willems H, Torfs R, Wets G (2011) Impact of time–activity patterns on personal exposure to black carbon. Atmos Environ 45(21):3594–3602

    Article  CAS  Google Scholar 

  • Ebelt ST, Fisher TV, Petkau AJ, Vedal S, Brauer M (2000) Exposure of chronic obstructive pulmonary disease (COPD) patients to particles: relationship between personal exposure and ambient air concentrations. J Air Waste Manag Assoc 50:174–187

    Google Scholar 

  • Englert N (2004) Fine particles and human health—a review of epidemiological studies. Toxicol Lett 149(1–3):235–242

    Article  CAS  Google Scholar 

  • Ferro AR, Kopperud RJ, Hildemann LM (2004) Elevated personal exposure to particulate matter from human activities in a residence. J Expo Anal Environ Epidemiol 14(Suppl 1):S34–S40

    Article  CAS  Google Scholar 

  • Filleul L, Rondeau V, Vandentorren S, Le Moual N, Cantagrel A, Annesi-Maesano I, Charpin D, Declercq C, Neukirch F, Paris C (2005) Twenty five year mortality and air pollution: results from the French PAARC survey. Occ Environ Med 62(7):453–460

    Article  CAS  Google Scholar 

  • Graff DW, Cascio WE, Rappold A, Zhou H, Huang Y‐CT, Devlin RB (2009) Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults. Environ Health Persp 117:1089–1094

  • Green DA et al (2008) Mineral dust exposure in young Indian adults: an effect on lung growth? Occup Environ Med 65:306–310

    Google Scholar 

  • Gupta T, Kothari A, Srivastava DK, Agarwal AK (2010) Measurement of number and size distribution of particles emitted from a mid-sized transportation multipoint port fuel injection gasoline engine. Fuel 89(9):2230–2233

    Article  CAS  Google Scholar 

  • Hameri K, Koponen IK, Aalto PP, Kulmala M (2002) The particle detection efficiency of the TSI-3007 condensation particle counter. J Aerosol Sci 33(10):1463–1469

    Article  CAS  Google Scholar 

  • Han XL, Naeher LP (2006) A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 32(1):106–120

    Article  CAS  Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249(1–3):85–101

    Article  CAS  Google Scholar 

  • He C, Morawska L, Taplin L (2007) Particle emission characteristics of office printers. Environ Sci Technol 41(17):6039–6045

    Article  CAS  Google Scholar 

  • Hesterberg TW, Lapin CA, Bunn WB (2008) A comparison of emissions from vehicles fueled with diesel or compressed natural gas. Environ Sci Technol 42(17):6437–6445

    Article  CAS  Google Scholar 

  • Janssen NAH, Hartog JJ, Hoek G, Brunekreef B, Lanki T, Timonen KL, Pekkanen J (2000) Personal exposure to fine particulate matter in elderly subjects: relation between personal, indoor, and outdoor concentrations. Air Waste 50:1133–1143

    Article  CAS  Google Scholar 

  • Jerrett M, Burnett R, Ma R, Pope C, Krewski D, Newbold K, Thurston G, Shi Y, Finkelstein N, Calle E (2005) Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16(6):727–736

    Article  Google Scholar 

  • Kandpal JB, Maheshwari RC, Kandpal TC (1995) Indoor air pollution from domestic cookstoves using coal, kerosene and LPG. Energy Convers Manag 36(11):1067–1072

    Article  CAS  Google Scholar 

  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11(3):231–252

    Article  CAS  Google Scholar 

  • Künzli N, Medina S, Kaiser R, Quénel P, Horak F, Studnicka M (2001) Assessment of deaths attributable to air Pollution: should we use risk estimates based on time series or on cohort studies? Am J Epidemiol 153(11):1050–1055

    Article  Google Scholar 

  • Lioy PJ (1995) Measurement methods for human exposure analysis. Environ Heal Perspect 103(Suppl 3):35–43

    Article  CAS  Google Scholar 

  • Long CM, Suh HH, Koutrakis P (2000) Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manag Assoc 50(7):1236–1250

    Article  CAS  Google Scholar 

  • Majumdar D, William S (2009) Chalk dustfall during classroom teaching: particle size distribution and morphological characteristics. Environ Monit Assess 148(1–4):343–351

    Article  CAS  Google Scholar 

  • Martin LW (1995) Monitoring of exposure to air pollution. Sci Total Environ 168(2):169–174

    Article  Google Scholar 

  • McDonnell WF, Nishino-Ishikawa N, Petersen FF, Chen LH, Abbey DE (2000) Relationships of mortality with the fine and coarse fractions of long-term ambient PM10 concentrations in nonsmokers. 10(5): 427–436.

  • Monn C (2001) Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos Environ 35(1):1–32

    Article  CAS  Google Scholar 

  • Muleski GE, Cowherd C, Kinsey JS (2005) Particulate emissions from construction activities. J Air Waste Manag Assoc 55(6):772–783

    CAS  Google Scholar 

  • Nafstad P, Håheim LL, Wisløff T, Gram F, Oftedal B, Holme I, Hjermann I, Leren P (2004) Urban air pollution and mortality in a cohort of Norwegian men. Environ Health Perspect 112(5)

  • Ott WR (1982) Concepts of human exposure to air pollution. Environ Int 7(3):179–196

    Article  Google Scholar 

  • Patel MM, Chillrud SN, Correa JC, Hazi Y, Feinberg M, Deepti KC, Prakash S, Ross JM, Levy D, Kinney PL (2010) Traffic-related particulate matter and acute respiratory symptoms among New York City area adolescents. Environ Heal Perspect 118(9):1338–1343

    Article  Google Scholar 

  • Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J (2001) Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects. Environ Health Persp 109:319–323

    Google Scholar 

  • Pitz M, Cyrys J, Karg E, Wiedensohler A, Wichmann HE, Heinrich J (2003) Variability of apparent particle density of an urban aerosol. Environ Sci Technol 37(19):4336–4342

    Article  CAS  Google Scholar 

  • Pope C 3rd, Thun M, Namboodiri M, Dockery D, Evans J, Speizer F, Heath C Jr (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 151(3):669–674

    Google Scholar 

  • Pope C, Burnett R, Thun M, Calle E, Krewski D, Ito K, Thurston G (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141

    Article  CAS  Google Scholar 

  • Pope C, Burnett R, Thurston G, Thun M, Calle E, Krewski D, Godleski J (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77

    Article  Google Scholar 

  • Raymer JH et al (2009) Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI. Atmos Environ 43:3910–3917

    Google Scholar 

  • Rojas-Bracho L, Alba N, Suh H, Koutrakis P, Oyola P (1999) Characterization of personal exposures to oxidant and particulate air pollution in Santiago. Epidemiology 10(4):68

    Google Scholar 

  • Roy AA, Baxla SP, Gupta T, Bandyopadhyaya R, Tripathi SN (2009) Particles emitted from indoor combustion sources: size distribution measurement and chemical analysis. Inhal Toxicol 21(10):837–848

    Article  CAS  Google Scholar 

  • Samoli E, Aga E, Touloumi G, Nisiotis K, Forsberg B, Lefranc A, Pekkanen J, Wojtyniak B, Schindler C, Niciu E, Brunstein R, Dodič Fikfak M, Schwartz J, Katsouyanni K (2006) Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 27(6):1129–1138

    Article  CAS  Google Scholar 

  • Spengler JD, Sexton K (1983) Indoor air pollution—a public health perspective. Science 221(4605):9–17

    Article  CAS  Google Scholar 

  • Tripathi SN, Tare V, Chinnam N, Srivastava AK, Dey S, Agarwal A, Kishore S, Lal RB, Manar M, Kanwade VP, Chauhan SSS, Sharma M, Reddy RR, Gopal KR, Narasimhulu K, Reddy LSS, Gupta S, Lal S (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. J Geophys Res Atmos 111(D23)

  • Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage an.d carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26(4):339–362

    Article  CAS  Google Scholar 

  • Zhu X, Ma F, Luan H, Wu D, Wang T (2010) Evaluation and comparison of measurement methods for personal exposure to fine particles in Beijing, China. Bull Environ Contam Toxicol 84(1):29–33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding for this study was provided to Dr. Tarun Gupta under the fast track faculty funding scheme by the Department of Science and Technology, Government of India. SNT was supported by the DST ICRP and Indo–French Center for Promotion of Advanced Research. We sincerely thank Dr. Petros Koutrakis and Dr. Mike Wolfson (HSPH) for their constructive suggestions. We would also like to thank the reviewers for their constructive suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Gupta.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2665 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, J.J., Gupta, T., Jat, R. et al. Measurement of personal and integrated exposure to particulate matter and co-pollutant gases. Environ Sci Pollut Res 20, 1632–1648 (2013). https://doi.org/10.1007/s11356-012-1179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1179-3

Keywords

Navigation