Skip to main content

Advertisement

Log in

Reversing T cell immunosenescence: why, who, and how

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Immunosenescence is the term commonly used to describe the multifaceted phenomenon encompassing all changes occurring in the immune system during aging. It contributes to render older adults more prone to develop infectious disease and main age-related diseases. While age clearly imposes drastic changes in immune physiology, older adults have heterogeneous health and immune phenotypes. This confronts scientists and researcher to develop more age-specific interventions rather than simply adopting intervention regimes used in younger people and this in order to maintain immune protection in older adults. Thus, this review provides evidences of the central role played by cell-mediated immunity in the immunosenescence process and explores the means by which senescent state of the cell-mediated immune function could be identified and predicted using biomarkers. Furthermore considerations are given to recent advances made in the field of age-specific immune interventions that could contribute to maintain immune protection, to improve quality of life, and/or to promote healthy aging of the growing part of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S, Mei H, Radtke H, Gromnica-Ihle E, Burmester GR, Arnold R, Radbruch A, Hiepe F (2009) Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113:214–223

    Article  PubMed  CAS  Google Scholar 

  • Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463

    Article  PubMed  CAS  Google Scholar 

  • Arden B, Klotz JL, Siu G, Hood LE (1985) Diversity and structure of genes of the alpha family of mouse T-cell antigen receptor. Nature 316:783–787

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R, Andrew D (2001) Age-associated thymic atrophy is not associated with a deficiency in the CD44(+)CD25(−)CD3(−)CD4(−)CD8(−) thymocyte population. Cell Immunol 212:150–157

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R, Pido J, Andrew D (2000) A simple method for the measurement of sjTREC levels in blood. Mech Ageing Dev 121:59–67

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R, Pido-Lopez J, Imami N, Henson SM, Ngom PT, Morre M, Niphuis H, Remarque E, Rosenwirth B, Heeney JL (2007) Old rhesus macaques treated with interleukin-7 show increased TREC levels and respond well to influenza vaccination. Rejuvenation Res 10(1):5–17

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R, Pitts D, Lapenna A, Mitchell W (2010) Immunity in the elderly: the role of the thymus. J Comp Pathol 142(Suppl 1):S111–S115

    Article  PubMed  CAS  Google Scholar 

  • Bogue M, Roth DB (1996) Mechanism of V(D)J recombination. Curr Opin Immunol 8:175–180

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B (2011) Persistent viral infections and immune aging. Ageing Res Rev 10:362–369

    Article  PubMed  CAS  Google Scholar 

  • Burt RK, Traynor A, Statkute L et al (2006) Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematous. JAMA 295:527–535

    Article  PubMed  CAS  Google Scholar 

  • Chain JL, Joachims ML, Hooker SW, Laurent AB, Knott-Craig CK, Thompson LF (2005) Real-time PCR method for the quantitative analysis of human T-cell receptor gamma and beta gene rearrangements. J Immunol Methods 300:12–23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen JC, Lim FC, Wu Q, Douek QW, Scott DK, Ravussin E, Hsu HC, Jazwinski SM, Mountz JD (2010) Maintenance of naïve CD8 T-cells in nonagerians by leptine, IGFBP3 and T3. Mech Ageing Dev 131:29–37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Kleer I, Vastert B, Klein M, Teklenburg G, Arkesteijn G, Yung GP, Albani S, Kuis W, Wulffraat N, Prakken B (2006) Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood 107:1696–1702

    Article  PubMed  CAS  Google Scholar 

  • de Pooter RF, Cho SK, Carlyle JR, Zuniga-Pflucker JC (2003) In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood 102:1649–1653

    Article  PubMed  CAS  Google Scholar 

  • Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695

    Article  PubMed  CAS  Google Scholar 

  • Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L, Collins RH, Koup RA (2000) Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstruction. Lancet 355:1875–1878

    Article  PubMed  CAS  Google Scholar 

  • Ferrando-Martinez S, Ruiz-Mateos E, Hernandez A, Gutierrez E, Rodriguez-Mendez MM, Ordonez A, Leal M (2011) Age-related deregulation of naive T cell homeostasis in elderly humans. Age 33:197–207

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–S176

    Article  PubMed  Google Scholar 

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    Article  PubMed  CAS  Google Scholar 

  • Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB (2011) Age effects on B cells and humoral immunity in humans. Ageing Res Rev 10:330–335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A et al (2010) Aging, frailty and age-related diseases. Biogerontology 11:547–563

    Article  PubMed  CAS  Google Scholar 

  • Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G (2011) Aging, immunity, and cancer. Discov Med 11:537–550

    PubMed  Google Scholar 

  • Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J (2008) Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation 5:51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goronzy JJ, Fulbright JW, Crowson CS, Poland GA, O’Fallon WM, Weyand CM (2001) Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol 75:12182–12187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Govind S, Lapenna A, Lang PO, Aspinall R (2012) Immunotherapy of immunosenescence: Who, How and When? Open Longev Sci (in press)

  • Hadrup SR, Strindhall J, Kollgaard T, Seremet T, Johansson B, Pawelec G et al (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176:2645–2653

    Article  PubMed  CAS  Google Scholar 

  • Haines CJ, Giffon TD, Lu LS, Lu X, Tessier-Lavigne M, Ross DT, Lewis DB (2009) Human CD4+ T cells recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J Exp Med 206:275–285

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hare KJ, Jenkinson EJ, Anderson G (1999) In vitro models of T cell development. Semin Immunol 11:3–12

    Article  PubMed  CAS  Google Scholar 

  • Haynes LES (2005) The effect of age on the cognate function of CD4+ T cells. Immunol Rev 205:220–228

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hazenberg MD, Stuart JW, Otto SA, Borleffs JC, Boucher CA, de Boer RJ, Miedema F, Hamann D (2000) T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95:249–255

    PubMed  CAS  Google Scholar 

  • Hazenberg MD, Otto SA, de Pauw ES, Roelofs H, Fibbe WE, Hamann D, Miedema F (2002) T-cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood 99:3449–3453

    Article  PubMed  CAS  Google Scholar 

  • Hazenberg MD, Borghans JAM, Boer RJ, Miedema F (2003) Thymic output: a bad TREC record. Nat Immunol 4:97–99

    Article  PubMed  CAS  Google Scholar 

  • Henson SM, Snelgrove R, Hussell T, Wells DJ, Aspinall R (2005) An IL-7 fusion protein that shows increased thymopoietic ability. J Immunol 175:4112–4118

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa K, Utsuyama M, Ishikawa T, Kikuchi Y, Kitagawa M, Fujii Y, Nariuchi H, Uetake H, Sugihara K (2009) Decline of T cell-related immune functions in cancer patients and an attempt to restore then through infusion of activated autologus T cells. Mech Ageing Dev 130:86–91

    Article  PubMed  CAS  Google Scholar 

  • Hünig T, Lücher F, Elfein K, Gogishvili T, Frölich M, Guler R, CulterA BF (2010) CD28 and IL-4: two heavyweights controlling the balance between immunity and inflammation. Med Microbiol Immunol 199:239–246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Janssens ACJW, van Duijn CM (2008) Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 17:R166–R173

    Article  PubMed  CAS  Google Scholar 

  • Jasper PJ, Zhai SK, Kalis SL, Kingzette M, Knight KL (2003) B lymphocyte development in rabbit: progenitor b cells and waning of b lymphopoiesis 1. J Immunol 171:6372–6380

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR et al (2005) Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 16:513–533

    Article  PubMed  CAS  Google Scholar 

  • Kelley KW, Weigent DA, Kooijman R (2007) Protein hormones and immunity. Brain Behav Immun 21:384–392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Keren Z, Averbuch D, Shahaf G, Zisman-Rozen S, Golan K, Itkin T, Lapidot T, Mehr R, Melamed D (2011a) Chronic B cell deficiency from birth prevents age-related alterations in the B lineage. J Immunol 187:2140–2147

    Article  PubMed  CAS  Google Scholar 

  • Keren Z, Naor S, Nussbaum S, Golan K, Itkin T, Sasaki Y, Schmidt-Supprian M, Lapidot T, Melamed D (2011b) B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood 117:3104–3112

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick RD, Rickabaugh T, Hultin LE et al (2008) Homeostasis of the naive CD4+ T cell compartment during aging. J Immunol 180:1499–1507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim K, Le CK, Sayers TJ, Muegge K, Durum SK (1998) The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2 and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J Immunol 160:5735–5741

    PubMed  CAS  Google Scholar 

  • Kohler S, Wagner U, Pierer M, Kimmig S, Oppmann B, Möwes B, Jülke K, Romagnani C, Thiel A (2005) Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol 35:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Kong FK, Chen CL, Cooper M (1998) Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity 8:97–104

    Article  PubMed  CAS  Google Scholar 

  • Lang PO, Aspinall R (2012) Immunosenescence and herd immunity: with an ever increasing aging population do we need to rethink vaccine schedules? Expert Rev Vaccines 11:167–176

    Article  PubMed  Google Scholar 

  • Lang PO, Samaras D (2012) Aging adults and seasonal influenza: does the vitamin D status (h)arm the body? J Aging Res 2012:806198

    Article  PubMed Central  PubMed  Google Scholar 

  • Lang PO, Govind S, Mitchell WA, Kenny N, Lapenna A, Pitts D, Aspinall R (2010a) Influenza vaccine effectiveness in aged individuals: the role played by cell-mediated immunity. Eur Geriatr Med 1:233–238

    Article  Google Scholar 

  • Lang PO, Mitchell WA, Lapenna A, Pitts D, Aspinall R (2010b) Immunological pathogenesis of main age-related diseases and frailty: role of immunosenescence. Eur Geriatric Med 1:112–121

    Article  Google Scholar 

  • Lang PO, Govind S, Mitchell WA, Siegrist CA, Aspinall R (2011a) Vaccine effectiveness in older individuals: what has been learned from the influenza-vaccine experience. Ageing Res Rev 10:389–395

    Article  PubMed  CAS  Google Scholar 

  • Lang PO, Mitchell WA, Govind S, Aspinall R (2011b) Real time-PCR assay estimating the naive T-cell pool in whole blood and dried blood spot samples: pilot study in young adults. J Immunol Methods 369:133–140

    Article  PubMed  CAS  Google Scholar 

  • Lang PO, Mendes A, Socquet J, Assir N, Aspinall R (2012) Effectiveness of influenza vaccine in aging and older adults: a comprehensive analysis of the evidence. Clin Interv Aging 7 (in press)

  • Larbi A, Pawelec G, Wong SC, Goldeck TJJY, Fulop T (2011) Impact of age on T-cell signaling: a general defect or specific alteration? Ageing Res Rev 10:370–378

    Article  PubMed  CAS  Google Scholar 

  • Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelievre JD, Boue F, Molina JM, Rouzioux C, Vettand-Fenoel V, Croughs T, Beq S, Thiebaut R, Chene G, Morre M, Delfraissy JF (2009) Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 119:997–1007

    PubMed Central  PubMed  CAS  Google Scholar 

  • Livak F, Schatz D (1996) T-cell receptor α locus V(D)J recombination by-products are abundant in thymocytes and mature T-cells. Mol Cell Biol 16:609–618

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lutz W, Sanderson W, Scherbov S (1997) Doubling of world population unlikely. Nature 387:803–805

    Article  PubMed  CAS  Google Scholar 

  • Macaulay R, Akbar AN, Henson SM (2012) The role of the T-cell in a aged-related inflammation. Age. doi:10.1007/s11357-012-9381-2

  • Markert ML, Boeck A, Hale LP, Kloster AL, McLaughlin TM, Batchvarova MN, Douek DC, Koup RA, Kostyu DD, Ward FE, Rice HE, Mahaffey SM, Schiff SE, Buckley RH, Haynes BF (1999) Transplantation of thymus tissue in complete DiGeorge syndrome. N Eng J Med 341:1180–1189

    Article  CAS  Google Scholar 

  • McElhaney JE, Effros RB (2011) Influenza vaccine responses in older adults. Ageing Res Rev 10:379–388

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mera SL (1998) The role of telomeres in ageing and cancer. Br J Biomed Sci 55:221–225

    PubMed  CAS  Google Scholar 

  • Mitchell WA, Lang PO, Aspinall R (2010) Tracing thymic output in older individuals. Clin Exp Immunol 161:497–503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mitchell WA, Castells A, Lang PO, Matas E, Lapenna A, Aspinall R (2012) Pulmonary delivery of interleukine 7 provides efficient and safe delivery to the aging immune system. Rejuvenation Res (in press)

  • Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP, Zaunders JJ (2003) Naive T cells are maintained by thymic output in ealry ages but by proliferation without phenotype change after age twenty. Immunol Cell Biol 81:487–495

    Article  PubMed  Google Scholar 

  • Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E et al (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452

    Article  PubMed  CAS  Google Scholar 

  • Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–624

    Article  PubMed  CAS  Google Scholar 

  • Oeppen J, Vaupel JW (2002) Broken limits to life expectancy. Science 296:1029–1031

    Article  PubMed  CAS  Google Scholar 

  • Ongrádi J, Kövesdi V (2010) Factors that may impact on immunosenescence: a appraisal. Immun Ageing 7:7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ortman CL, Dittmar KA, Witte PL, Le PT (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14:813–822

    Article  PubMed  CAS  Google Scholar 

  • Ostan R, Bucci L, Capril M, Salvioli S, Scurti M, Pini E, Monti D (2008) Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 15:224–240

    Article  PubMed  CAS  Google Scholar 

  • Patel DD, Gooding ME, Parrott RE, Curtis KM, Haynes BF, Buckley RH (2000) Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Eng J Med 342:1325–1332

    Article  CAS  Google Scholar 

  • Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19:47–56

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini M, Calzascia T, Toe JG, Preston SP, Lin AE, Elford AR, Shahinian A, Lang PA, Lang KS, Morre M, Assouline B, Lahl K, Sparwasser T, Tedder TF, Paik JH, DePinho RA, Basta S, Ohashi PS, Mak TW (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144:601–613

    Article  PubMed  CAS  Google Scholar 

  • Phillips JA, Brondstetter TI, English CA, Lee HE, Virts EL, Thoman ML (2004) IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J Immunol 173:4867–4874

    Article  PubMed  CAS  Google Scholar 

  • Rosen O, Thiel A, Massenkeil G et al (2000) Autologus stem-cell transplantation in refractory autoimmune diseases after in vivo immunoablation and ex-vivo depletion of mononuclear cells. Arthritis Res 2:327–336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Sportes C, Ahmadzadeh M, Fry TJ, Ngo LT, Schwarz SL, Stetler-Stevenson M, Morton KE, Mavroukakis SA, Morre M, Buffet R, Mackall CL, Gress RE (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29:313–319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saurwein-Teissl M, Lung TL, Marx F, Gschösser C, Asch E, Blasko I, Parson W, Böck G, Schönitzer D, Trannoy E, Grubeck-Loebenstein B (2002) Lack of antibody production following immunization in old age: association with CD8(+)CD28(−) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168:5893–5899

    Article  PubMed  CAS  Google Scholar 

  • Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC et al (2000) Leukemia inhibitory factor, oncostatin M, Il-6 and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164:2180–2187

    Article  PubMed  CAS  Google Scholar 

  • Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR (2011). Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 10(346-353)

    Google Scholar 

  • Siu G, Kronenberg M, Strauss E, Haars R, Mak TW, Hood L (1984) The structure, rearrangement and expression of D beta gene segments of the murine T-cell antigen receptor. Nature 311:344–350

    Article  PubMed  CAS  Google Scholar 

  • Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205:1701–1714

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sportes C, Babb RR, Krumlauf MC, Hakim FT, Steinberg SM, Chow CK, Brown MR, Fleisher TA, Noel P, Maric I, Stetler-Stevenson M, Engel J, Buffet R, Morre M, Amato RJ, Pecora A, Mackall CL, Gress RE (2010) Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin Cancer Res 16:727–735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sprent J, Tough DF (1994) Lymphocyte life-span and memory. Science 265:1395–1400

    Article  PubMed  CAS  Google Scholar 

  • Strindhall J, Nilsson BO, Lofgren S, Ernerudh J, Pawelec G, Johansson B et al (2007) No Immune Risk Profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42:753–761

    Article  PubMed  CAS  Google Scholar 

  • Takeshita S, Toda M, Ymagishi H (1989) Excision products of the T cell receptor gene support a progressive rearrangement model of the α/δ locus. EMBO J 8:3261–3270

    PubMed Central  PubMed  CAS  Google Scholar 

  • Trzonkowski P, Mysliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak LB, Machala M, Mysliwski A (2003) Association between cytomegalovirus infection, enhanced proinflammatory response and low level of antihemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine 21:3826–3836

    Article  PubMed  CAS  Google Scholar 

  • Tsaknaridis L, Spencer L, Culbertson N et al (2003) Functional assay for human CD4+CD25+ Treg cells reveals an age- dependent loss of suppressive activity. J Neurosci Res 74:296–308

    Article  PubMed  CAS  Google Scholar 

  • Vallejo AN (2005) CD28 extinction in human T-cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169

    Article  PubMed  CAS  Google Scholar 

  • Verschuren MC, Wolvers-Tettero IL, Breit TM, Noordzij J, van Wering ER, van Dongen JJ (1997) Preferential rearrangements of the T cell receptor-delta-deleting elements in human T cells. J Immunol 159:4341–4349

    PubMed  Google Scholar 

  • Virgin HW, Wherry EJ, AHmed R (2009) Redefining chronic viral infection. Cell 138:30–50

    Article  PubMed  CAS  Google Scholar 

  • Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Westin ER, Chavez E, Lee KM, Gourronc FA, Riley S, Lansdorp PM, Goldman FD, Klingelhutz AJ (2007) Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts. Aging Cell 6:383–394

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S et al (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60:556–565

    Article  PubMed  Google Scholar 

  • Wikby A, Mansson IA, Johansson B, Strindhall J, Nilsson SE (2008) The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology 9:299–308

    Article  PubMed  Google Scholar 

  • Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM, Driessen GJ, van Dongen JJ, Kayser M, Langerak AW (2010) Estimating human age from T-cell DNA rearrangements. Curr Biol 20:R970–R971

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Olivier Lang.

About this article

Cite this article

Lang, P.O., Govind, S. & Aspinall, R. Reversing T cell immunosenescence: why, who, and how. AGE 35, 609–620 (2013). https://doi.org/10.1007/s11357-012-9393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9393-y

Keywords

Navigation