Skip to main content

Advertisement

Log in

siRNA targeting midkine inhibits gastric cancer cells growth and induces apoptosis involved caspase-3,8,9 activation and mitochondrial depolarization

  • Published:
Journal of Biomedical Science

Abstract

Midkine (MK), a heparin-binding growth factor, is expressed highly in various malignant tumors, so it acts as attractive therapeutic target. In the present study, we used siRNA targeting MK to downregulate human MK expression in human gastric cancer cell line BGC823 and SGC7901 so as to determine the advantages of this anticancer therapeutic. The cell proliferation was evaluated by a WST-8 (4-[3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate sodium salt) assay and colony formation assay. Apoptosis was determined by flow cytometer analysis and colorimetric assay. Our results showed that the BGC823 and SGC7901 cell growth were significantly inhibited by knockdown of MK gene. The loss of mitochondrial membrane potential, release of cytochrome c from the mitochondria into cytosol and increased activity of caspase-3, 8 and 9 occurred concomitantly with inhibition of MK gene. These results indicated that siRNA targeting MK gene can inhibit gastric cancer cells growth and induce apoptosis via mitochondrial depolarization and caspase-3 activation. MK siRNA may be a promising novel and potential therapeutic strategy for the treatment of gastric cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kadomatsu K., Muramatsu T. (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 2: 127–143

    Article  CAS  Google Scholar 

  2. Muramaki M., Miyake H., Hara I., Kamidono S. (2003) Introduction of midkine gene into human bladder cancer cells enhances their malignant phenotype but increases their sensitivity to antiangiogenic therapy. Clin. Cancer Res. 9: 5152–5160

    PubMed  CAS  Google Scholar 

  3. Tsutsui J., Kadomatsu K., Matsubara S., Nakagawara A., Hamanoue M., et al. (1993) A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilm’s tumor and other human carcinomas. Cancer Res. 53(6): 1281–1285

    PubMed  CAS  Google Scholar 

  4. Aridome K., Tsutsui J., Takao S., Kadomatsu K., Ozawa M., Aikou T., Muramatsu T. (1995) Increased midkine gene expression in human gastrointestinal cancers. Jpn. J. Cancer Res. 86(7): 655–661

    PubMed  CAS  Google Scholar 

  5. Ikematsu S., Okamoto K., Yoshida Y., et al. (2003) High levels of urinary midkine in various cancer patients. Biochem. Biophys. Res. Commun. 306(2):329–332

    Article  PubMed  CAS  Google Scholar 

  6. Ikematsu S., Yano A., Aridome K., et al. (2000) Serum midkine levels are increased in patients with various types of carcinomas. Br. J. Cancer. 83(6):701–706

    Article  PubMed  CAS  Google Scholar 

  7. Obata Y., Kikuchi S., Lin Y., et al. (2005) Serum midkine concentrations and gastric cancer. Cancer Sci. 96: 54–56

    Article  PubMed  CAS  Google Scholar 

  8. Song X., Muramatsu H., Aridome K., Aikou T., Koide N., Tsuji T., Muramatsu T. (1997) The serum level of midkine, heparin-binding growth factor, as a tumor maker. Biomed. Res. 18: 375–381

    CAS  Google Scholar 

  9. Kaifi J.T., Fiegel H.C., Rafnsdottir S.L., et al. (2007) Midkine as a prognostic marker for gastrointestinal stromal tumors. J. Cancer Res. Clin. Oncol. 133:431–435

    Article  PubMed  CAS  Google Scholar 

  10. Huang Y.L., Cao G.C., Wang H., Wang Q.L., Hou Y.Y. (2007) The expression and location of midkine in gastric carcinomas of Chinese patients. Cell Mol. Immunol. 4(2): 135–140

    PubMed  CAS  Google Scholar 

  11. Inoh K., Muramatsu H., Torii S., Ikematsu S., Oda M., Kumai H., Sakuma S., Inui T., Kimura T., Muramatsu T. (2006) Doxorubicin-conjugated anti-midkine monoclonal antibody as a potential anti-tumor drug. Jpn. J. Clin. Oncol. 36: 207–211

    Article  PubMed  Google Scholar 

  12. Takei Y., Kadomatsu K., Matsuo S., Itoh H., Nakazawa K., Kubota S., Muramatsu T. (2001) Antisense oligodeoxynucleotide targeted to midkine, a heparin-binding growth factor, suppresses tumorigenicity of mouse rectal carcinoma cells. Cancer Res. 61: 8486–8491

    PubMed  CAS  Google Scholar 

  13. Takei Y., Kadomatsu K., Yuasa K., Sato W., Muramatsu T. (2005) Morpholino antisense oligomer targeting human midkine: its application for cancer therapy. Int. J. Cancer 114: 490–497

    Article  PubMed  CAS  Google Scholar 

  14. Banno H., Takei Y., Muramatsu T., Komori K., Kadomatsu K. (2006) Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J. Vasc. Surg. 44: 633–641

    Article  PubMed  Google Scholar 

  15. Sato W., Takei Y., Yuzawa Y., Matsuo S., Kadomatsu K., Muramatsu T. (2005) Midkine antisense oligodeoxyribonucleotide inhibits renal damage induced by ischemic reperfusion. Kidney Int. 67: 1330–1339

    Article  PubMed  CAS  Google Scholar 

  16. Dorsett Y., Tuschl T. (2004) siRNAs: application in functional genomics and potential therapeutics. Nat. Rev. Drug Discov. 3: 318–329

    Article  PubMed  CAS  Google Scholar 

  17. Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173–178

    Article  PubMed  CAS  Google Scholar 

  18. Caplen N.J. (2004) Down regulating gene expression: the impact of RNA interference. Gene Ther. 11: 1241–1248

    Article  PubMed  CAS  Google Scholar 

  19. Ishiyama M., Miyazono Y., Sasamoto K., Ohkura Y., Ueno K. (1997) A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44: 1299–1305

    Article  CAS  PubMed  Google Scholar 

  20. Bai J., Rodriguez A.M., Malendez J.A., Cederbaum A.I. (1999) Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J. Biol. Chem. 274: 26217–26224

    Article  PubMed  CAS  Google Scholar 

  21. Pathak N., Khandelwal S. (2006) Influence of cadmium on murine thymocytes: potentiation of apoptosis and oxidative stress. Toxicol. Lett. 165: 121–132

    Article  PubMed  CAS  Google Scholar 

  22. Parone P.A., James D., Martinou J.C. (2002) Mitochondria: regulating the inevitable. Biochimie 84: 105–111

    Article  PubMed  CAS  Google Scholar 

  23. Wei H., John J.K. (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol. 4: 721–729

    Article  CAS  Google Scholar 

  24. Lisa J.S., John J.R. (2003) Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol. 21: 1457–1465

    Article  CAS  Google Scholar 

  25. Liu J.J., Lin D.J., Liu P.Q., Huang M., Li X.D., Huang R.W. (2006) Induction of apoptosis and inhibition of cell adhesive and invasive effects by tanshinone IIA in acute promyelocytic leukemia cells in␣vitro. J. Biomed. Sci. 13: 813–823

    Article  PubMed  CAS  Google Scholar 

  26. Mayer B., Oberbauer R. (2003) Mitochondrial regulation of apoptosis. News Physiol. Sci. 18: 89–94

    PubMed  CAS  Google Scholar 

  27. Ohuchida T., Okamoto K., Akahane K., Higure A., Todoroki H., Abe Y., Kikuchi M. (2004) Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer 100: 2430–2436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation of Graduate School of Nanjing University, the Foundation for Key Program of Ministry of Education, China (Grant No. 02111) and the 985-II Program of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yayi Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Huang, Y., Ni, Y. et al. siRNA targeting midkine inhibits gastric cancer cells growth and induces apoptosis involved caspase-3,8,9 activation and mitochondrial depolarization. J Biomed Sci 14, 783–795 (2007). https://doi.org/10.1007/s11373-007-9192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9192-0

Keywords

Navigation