Skip to main content

Advertisement

Log in

Insulin-like growth factor 1 improves the efficacy of mesenchymal stem cells transplantation in a rat model of myocardial infarction

  • Published:
Journal of Biomedical Science

Abstract

Background Previous study demonstrated the improvement of cardiac function was proportional to the number of cells implanted. Therefore, increasing cell survival in the infarcted myocardium might contribute to the improvement of the functional benefit of cell transplantation. Methods and results MSCs were treated with IGF-1 in vitro and infused into the acute myocardial infarction rats via the tail vein. After treatment of MSCs with IGF-1 for 48 h, flow cytometric analysis showed marked enhancement of expression of CXCR4 in the cell surface. After 4 weeks of transplantation, we found 1) a greater number of engrafted MSCs arrived and survived in the peri-infarct region; 2) TnT protein expression and capillary density were enhanced; 3) LV cavitary dilation, transmural infarct thinning, deposition of total collagen in the peri-infarct region and cardiac dysfunction were attenuated. Conclusion 1) IGF-1 treatment has time-dependent and dose-dependent effects on CXCR4 expression in MSCs in vitro. 2) IGF-1 improves the efficacy of MSCs transplantation in a rat model of myocardial infarction mainly via enhancement of the number of cells attracted into the infarcted heart. These findings provide a novel stem cell therapeutic avenue against ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toma C., Pittenger M.F., Cahill K.S., Byrne B.J., Kessler P.D., Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93–98, 2002.

    Article  PubMed  Google Scholar 

  2. Wang J.S., Shum-Tim D., Galipeau J., Chedrawy E., Eliopoulos N., Chiu R.C., Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J. Thorac. Cardiovasc. Surg. 120: 999–1005, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Shake J.G., Gruber P.J., Baumgartner W.A., Senechal G., Meyers J., Redmond J.M., Pittenger M.F., Martin B.J., Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73: 1919–1925, 2002.

    Article  PubMed  Google Scholar 

  4. Pouzet B., Vilquin J.T., Hagege A.A., Scorsin M., Messas E., Fiszman M., Schwartz K., Menasche P., Factors affecting functional outcome after autologous skeletal myoblast transplantation. Ann. Thorac. Surg. 71: 844–850, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Kollet O., Spiegel A., Peled A., Petit I., Byk T., Hershkoviz R., Guetta E., Barkai G., Nagler A., Lapidot T., Rapid and efficient homing of human CD34(+)CD38(−/low) CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/ SCID/B2m(null) mice. Blood. 97: 3283–3291, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Peled A., Petit I., Kollet O., Magid M., Ponomaryov T., Byk T., Nagler A., Ben-Hur H., Many A., Shultz L., Lider O., Alon R., Zipori D., Lapidot T., Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 283: 845–848, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Urbich C., Aicher A., Heeschen C., Dernbach E., Hofmann W.K., Zeiher A.M., Dimmeler S., Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol. 39: 733–742, 2005.

    Article  PubMed  CAS  Google Scholar 

  8. Xu M., Uemura R., Dai Y., Wang Y., Pasha Z., Ashraf M., In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J. Mol Cell Cardiol. 42: 441–448, 2007.

    Article  PubMed  CAS  Google Scholar 

  9. Su E.J., Cioffi C.L., Stefansson S., Mittereder N., Garay M., Hreniuk D., Liau G., Gene therapy vector-mediated expression of insulin-like growth factors protects cardiomyocytes from apoptosis and enhances neovascularization. Am. J. Physiol. Heart Circ. Physiol. 284: H1429–H1440, 2003.

    PubMed  CAS  Google Scholar 

  10. Li Y., Yu X., Lin S., Li X., Zhang S., Song Y.H., Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 356: 780–784, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Nagaya N., Fujii T., Iwase T., Ohgushi H., Itoh T., Uematsu M., Yamagishi M., Mori H., Kangawa K., Kitamura S., Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am. J. Physiol. Heart Circ. Physiol. 287: H2670–H2676, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Barbash I.M., Chouraqui P., Baron J., Feinberg M.S., Etzion S., Tessone A., Miller L., Guetta E., Zipori D., Kedes L.H., Kloner R.A., Leor J., Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation. 108: 863–868, 2003.

    Article  PubMed  Google Scholar 

  13. Chen J., Zhang Z.G., Li Y., Wang L., Xu Y.X., Gautam S.C., Lu M., Zhu Z., Chopp M., Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. 92: 692–699, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Askari A.T., Unzek S., Popovic Z.B., Goldman C.K., Forudi F., Kiedrowski M., Rovner A., Ellis S.G., Thomas J.D., DiCorleto P.E., Topol E.J., Penn M.S., Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362: 697–703, 2003.

    Article  PubMed  CAS  Google Scholar 

  15. Pillarisetti K., Gupta S.K., Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation 25: 293–300, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Hiasa K., Ishibashi M., Ohtani K., Inoue S., Zhao Q., Kitamoto S., Sata M., Ichiki T., Takeshita A., Egashira K., Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 109: 2454–2461, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Askari A.T., Unzek S., Popovic Z.B., Goldman C.K., Forudi F., Kiedrowski M., Rovner A., Ellis S.G., Thomas J.D., DiCorleto P.E., Topol E.J., Penn M.S., Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362: 697–703, 2003.

    Article  PubMed  CAS  Google Scholar 

  18. Abbott J.D., Huang Y., Liu D., Hickey R., Krause D.S., Giordano F.J., Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110: 3300–3305, 2004.

    Article  PubMed  Google Scholar 

  19. Ma J., Ge J., Zhang S., Sun A., Shen J., Chen L., Wang K., Zou Y., Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 100: 217–223, 2005.

    Article  PubMed  CAS  Google Scholar 

  20. Hattori K., Heissig B., Tashiro K., Honjo T., Tateno M., Shieh J.H., Hackett N.R., Quitoriano M.S., Crystal R.G., Rafii S., Moore M.A., Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97: 3354–3360, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Moore M.A., Hattori K., Heissig B., Shieh J.H., Dias S., Crystal R.G., Rafii S., Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann. N.Y. Acad. Sci. 938: 36–45, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Elmadbouh I., Haider H.Kh., Jiang S., Idris N.M., Lu G., Ashraf M. Ex vivo delivered stromal cell-derived factor-1α promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol. 42: 792–803, 2007.

    Article  PubMed  CAS  Google Scholar 

  23. Petit I., Szyper-Kravitz M., Nagler A., Lahav M., Peled A., Habler L., Ponomaryov T., Taichman R.S., Arenzana-Seisdedos F., Fujii N., Sandbank J., Zipori D., Lapidot T., G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3: 687–694, 2002.

    Article  PubMed  CAS  Google Scholar 

  24. Kahn J., Byk T., Jansson-Sjostrand L., Petit I., Shivtiel S., Nagler A., Hardan I., Deutsch V., Gazit Z., Gazit D., Karlsson S., Lapidot T., Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 103: 2942–2949, 2004.

    Article  PubMed  CAS  Google Scholar 

  25. Bhakta S., Hong P., Koc O., The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc. Revasc. Med. 7: 19–24, 2006.

    Article  PubMed  Google Scholar 

  26. Ambler G.R., Johnston B.M., Maxwell L., Gavin J.B., Gluckman P.D., Improvement of doxorubicin induced cardiomyopathy in rats treated with insulin-like growth factor I. Cardiovasc. Res. 27: 1368–1373, 1993.

    PubMed  CAS  Google Scholar 

  27. Duerr R.L., McKirnan M.D., Gim R.D., Clark R.G., Chien K.R., Ross J. Jr., Cardiovascular effects of insulin-like growth factor-1 and growth hormone in chronic left ventricular failure in the rat. Circulation 93: 2188–2196, 1996.

    PubMed  CAS  Google Scholar 

  28. Kinugawa S., Tsutsui H., Ide T., Nakamura R., Arimura K., Egashira K., Takeshita A., Positive inotropic effect of insulin-like growth factor-1 on normal and failing cardiac myocytes. Cardiovasc. Res. 43: 157–164, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. Li G., Borger M.A., Williams W.G., Weisel R.D., Mickle D.A., Wigle E.D., Li R.K., Regional overexpression of insulin-like growth factor-I and transforming growth factor-beta1 in the myocardium of patients with hypertrophic obstructive cardiomyopathy. J. Thorac. Cardiovasc. Surg. 123: 89–95, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Li Q., Li B., Wang X., Leri A., Jana K.P., Liu Y., Kajstura J., Baserga R., Anversa P., Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J. Clin. Invest. 100: 1991–1999, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Redaelli G., Malhotra A., Li B., Li P., Sonnenblick E.H., Hofmann P.A., Anversa P., Effects of constitutive overexpression of insulin-like growth factor-1 on the mechanical characteristics and molecular properties of ventricular myocytes. Circ. Res. 82: 594–603, 1998.

    PubMed  CAS  Google Scholar 

  32. Ross J. Jr. Growth hormone, cardiomyocyte contractile reserve, and heart failure. Circulation 99: 15–17, 1999.

    PubMed  Google Scholar 

  33. Welch S., Plank D., Witt S., Glascock B., Schaefer E., Chimenti S., Andreoli A.M., Limana F., Leri A., Kajstura J., Anversa P., Sussman M.A., Cardiac-specific IGF-1 expression attenuates dilated cardiomyopathy in tropomodulin-overexpressing transgenic mice. Circ. Res. 90: 641–648, 2002.

    Article  PubMed  CAS  Google Scholar 

  34. Kofidis T., de Bruin J.L., Yamane T., Balsam L.B., Lebl D.R., Swijnenburg R.J., Tanaka M., Weissman I.L., Robbins R.C., Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22: 1239–1245, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Xi Wang, Ping Hu, Yanhong Tang (Department of Cardiology, Renmin Hospital, Wuhan University School of Medicine, Wuhan, China) for great assistance. This project was supported by Department of Health of Hubei province (JX3B48), Department of Education of Hubei province for excellent youth science and tech group (No T200606), Department of Technology of Hubei province (2005AA301C38–2) and Xianning college (KY0565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Lin, G., Bao, C. et al. Insulin-like growth factor 1 improves the efficacy of mesenchymal stem cells transplantation in a rat model of myocardial infarction. J Biomed Sci 15, 89–97 (2008). https://doi.org/10.1007/s11373-007-9207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-007-9207-x

Keywords

Navigation