Skip to main content
Log in

Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

This work characterizes the mitochondrial proteomic profile in the failing heart and elucidates the molecular basis of mitochondria in heart failure. Heart failure was induced in rats by myocardial infarction, and mitochondria were isolated from hearts by differential centrifugation. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry, a system biology approach was employed to investigate differences in mitochondrial proteins between normal and failing hearts. Mass spectrometry identified 27 proteins differentially expressed that involved in energy metabolism. Among those, the up-regulated proteins included tricarboxylic acid cycle enzymes and pyruvate dehydrogenase complex subunits while the down-regulated proteins were involved in fatty acid oxidation and the OXPHOS complex. These results suggest a substantial metabolic switch from free fatty acid oxidation to glycolysis in heart failure and provide molecular evidence for alterations in the structural and functional parameters of mitochondria that may contribute to cardiac dysfunction during ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCr:

phosphocreatine

ANT:

adenine nucleotide translocator

CHAPS:

3-[(3-cholamidopropyl)-dimethyammonio]-1-propane sulfate

DTT:

dithiothreitol

SDS:

Sodium dodecyl sulfate

HEPES:

N-2-Hydroxyethylpiperazine-N′-2′-ethanesu lfonic acid

EDTA:

ethylenediamine tetraacetic acid

EGTA:

ethyleneglycol bis (2-aminoethyl ether) tetraacetic acid

PMSF:

phenylmethyl sulfonylfluoride

TEMED:

N,N,N′,N′-Tetramethylethylenediamine

IPG:

immobilized pH gradient

MALDITOF-MS:

matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy

PMF:

peptide mass fingerprinting

References

  1. Braunwald E. Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med, 1997, 337: 1360–1369, 10.1056/NEJM199711063371906, 1:STN:280:DyaK1c%2FgtVSjtA%3D%3D, 9358131

    Article  PubMed  CAS  Google Scholar 

  2. Kannel W B. Incidence and epidemiology of heart failure. Heart Fail Rev, 2000, 5: 167–173, 10.1023/A:1009884820941, 1:STN:280:DC%2BD2MrltVeluw%3D%3D, 16228142

    Article  PubMed  CAS  Google Scholar 

  3. Drexler H. Heart failure: pathophysiology, molecular biology, and clinical management. N Engl J Med, 2000, 342: 2005–2006, 10.1056/NEJM200006293422622

    Article  Google Scholar 

  4. Murray A J, Edwards L M, Clarke K. Mitochondria and heart failure. Curr Opin Clin Nutr Metab Care, 2007, 10: 704–711, 10.1097/MCO.0b013e3282f0ecbe, 1:CAS:528:DC%2BD2sXhtlGgu73E, 18089951

    Article  PubMed  CAS  Google Scholar 

  5. Tsutsui H. Mitochondrial oxidative stress and heart failure. Intern Med, 2006, 45: 809–813, 10.2169/internalmedicine.45.1765, 16880705

    Article  PubMed  Google Scholar 

  6. Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res, 2009, 81: 449–456, 10.1093/cvr/cvn280, 1:CAS:528:DC%2BD1MXhtlKitL8%3D, 18854381

    Article  PubMed  CAS  Google Scholar 

  7. Hardy C J, Weiss R G, Bottomley P A, et al. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J, 1991, 122 (3 Pt 1): 795–801, 10.1016/0002-8703(91)90527-O, 1:STN:280:DyaK3MzksVygsQ%3D%3D, 1877457

    Article  PubMed  CAS  Google Scholar 

  8. Neubauer S, Horn M, Naumann A, et al. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest, 1995, 95: 1092–1100, 10.1172/JCI117756, 1:CAS:528:DyaK2MXktlKhtb8%3D, 7883957

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Graham B H, Waymire K G, Cottrell B, et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet, 1997, 16: 226–234, 10.1038/ng0797-226, 1:CAS:528:DyaK2sXktFCrtL4%3D, 9207786

    Article  PubMed  CAS  Google Scholar 

  10. Wang J, Wilhelmsson H, Graff C, et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet, 1999, 21: 133–137, 10.1038/5089, 1:CAS:528:DyaK1MXltlWisQ%3D%3D, 9916807

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Huang T T, Carlson E J, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 1995, 11: 376–381, 10.1038/ng1295-376, 1:CAS:528:DyaK2MXpvVCksL8%3D, 7493016

    Article  PubMed  CAS  Google Scholar 

  12. Johnson D T, Harris R A, French S, et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol, 2007, 292: C689–697, 10.1152/ajpcell.00108.2006, 1:CAS:528:DC%2BD2sXjt1Gmtbo%3D, 16928776

    Article  PubMed  CAS  Google Scholar 

  13. Taylor S W, Fahy E, Zhang B, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol, 2003, 21: 281–286, 10.1038/nbt793, 1:CAS:528:DC%2BD3sXhsFajs7k%3D, 12592411

    Article  PubMed  CAS  Google Scholar 

  14. Fountoulakis M, Soumaka E, Rapti K, et al. Alterations in the heart mitochondrial proteome in a desmin null heart failure model. J Mol Cell Cardiol, 2005, 38: 461–474, 10.1016/j.yjmcc.2004.12.008, 1:CAS:528:DC%2BD2MXhslCht7k%3D, 15733906

    Article  PubMed  CAS  Google Scholar 

  15. Sakakibara Y, Nishimura K, Tambara K, et al. Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J Thorac Cardiovasc Surg, 2002, 124: 50–56, 10.1067/mtc.2002.121293, 1:CAS:528:DC%2BD38XlslKqtLw%3D, 12091808

    Article  PubMed  CAS  Google Scholar 

  16. Nishina T, Nishimura K, Yuasa S, et al. Initial effects of the left ventricular repair by plication may not last long in a rat ischemic cardiomyopathy model. Circulation, 2001, 104 (12 Suppl 1): I241–245, 1:STN:280:DC%2BD3Mritl2jsQ%3D%3D, 11568063

    PubMed  CAS  Google Scholar 

  17. Santos A A, Helber I, Flumignan R L, et al. Doppler echocardiographic predictors of mortality in female rats after myocardial infarction. J Card Fail, 2009, 15: 163–168, 10.1016/j.cardfail.2008.10.017, 19254677

    Article  PubMed  Google Scholar 

  18. Dent M R, Singal T, Dhalla N S, et al. Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction. J Cell Mol Med, 2004, 8: 526–536, 10.1111/j.1582-4934.2004.tb00477.x, 1:CAS:528:DC%2BD2MXlt1KqsL4%3D, 15601581

    Article  PubMed  CAS  Google Scholar 

  19. Mela L, Seitz S. Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. Methods Enzymol, 1979, 55: 39–46, 10.1016/0076-6879(79)55006-X, 1:CAS:528:DyaE1MXlvV2hu7s%3D, 459851

    Article  PubMed  CAS  Google Scholar 

  20. Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4: 3665–3685, 10.1002/pmic.200401031, 15543535

    Article  PubMed  Google Scholar 

  21. Jiang L, Lindpaintner K, Li H F, et al. Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia. Amino Acids, 2003, 25: 49–57, 1:CAS:528:DC%2BD3sXkvFymsrw%3D, 12836058

    Article  PubMed  CAS  Google Scholar 

  22. Xun M, Zhao S H, Cao C X, et al. Proteomic analysis of HuH-7 cells harboring in vitro-transcribed full-length hepatitis C virus 1b RNA. Acta Pharmacol Sin, 2008, 29: 720–727, 10.1111/j.1745-7254.2008.00789.x, 18501119

    Article  PubMed  Google Scholar 

  23. Krzeminski T F, Nozynski J K, Grzyb J, et al. Wide-spread myocardial remodeling after acute myocardial infarction in rat. Features for heart failure progression. Vascul Pharmacol, 2008, 48(2–3): 100–108, 1:CAS:528:DC%2BD1cXjtVWmsL4%3D

    CAS  Google Scholar 

  24. Bing R J, Siegel A, Ungar I, et al. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med, 1954, 16: 504–515, 10.1016/0002-9343(54)90365-4, 1:CAS:528:DyaG2cXmsFSmsw%3D%3D, 13148192

    Article  PubMed  CAS  Google Scholar 

  25. Carlsten A, Hallgren B, Jagenburg R, et al. Myocardial metabolism of glucose, lactic acid, amino acids and fatty acids in healthy human individuals at rest and at different work loads. Scand J Clin Lab Invest, 1961, 13: 418–428, 10.3109/00365516109137305, 1:CAS:528:DyaF3sXktF2nsw%3D%3D, 13876667

    Article  PubMed  CAS  Google Scholar 

  26. Wisneski J A, Gertz E W, Neese R A, et al. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest, 1987, 79: 359–366, 10.1172/JCI112820, 1:CAS:528:DyaL2sXhslagsLw%3D, 3805273

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Lopaschuk G D, Collins-Nakai R L, Itoi T. Developmental changes in energy substrate use by the heart. Cardiovasc Res, 1992, 26: 1172–1180, 10.1093/cvr/26.12.1172, 1:CAS:528:DyaK3sXhsVeqtLw%3D, 1288863

    Article  PubMed  CAS  Google Scholar 

  28. Schwer B, Bunkenborg J, Verdin R O, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA, 2006, 103: 10224–10229, 10.1073/pnas.0603968103, 1:CAS:528:DC%2BD28XntlKmsLw%3D, 16788062

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Thorpe C, Kim J J. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J, 1995, 9: 718–725, 1:CAS:528:DyaK2MXmvFCltbw%3D, 7601336

    PubMed  CAS  Google Scholar 

  30. Opie L H, Sack M N. Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning. J Mol Cell Cardiol, 2002, 34: 1077–1089, 10.1006/jmcc.2002.2066, 1:CAS:528:DC%2BD38XnslGru7w%3D, 12392880

    Article  PubMed  CAS  Google Scholar 

  31. Orchard C. The effect of acidosis on excitation-contraction coupling in isolated ferret heart muscle. Mol Cell Biochem, 1989, 89: 169–173, 10.1007/BF00220771, 1:STN:280:DyaK3c%2FktlOjsA%3D%3D, 2682209

    Article  PubMed  CAS  Google Scholar 

  32. Chiu H C, Kovacs A, Ford D A, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest, 2001, 107: 813–822, 10.1172/JCI10947, 1:CAS:528:DC%2BD3MXisFWhsbc%3D, 11285300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Taegtmeyer H. Cardiac metabolism as a target for the treatment of heart failure. Circulation, 2004, 110: 894–896, 10.1161/01.CIR.0000139340.88769.D5, 15326079

    Article  PubMed  Google Scholar 

  34. Nikolaidis L A, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation, 2004, 110: 955–961, 10.1161/01.CIR.0000139339.85840.DD, 1:CAS:528:DC%2BD2cXms1OgtLw%3D, 15313949

    Article  PubMed  CAS  Google Scholar 

  35. Hasenfuss G, Maier L S, Hermann H P, et al. Influence of pyruvate on contractile performance and Ca(2+) cycling in isolated failing human myocardium. Circulation, 2002, 105: 194–199, 10.1161/hc0202.102238, 1:CAS:528:DC%2BD38XhsFaitrs%3D, 11790700

    Article  PubMed  CAS  Google Scholar 

  36. Zhong P, Wang W Y, Zhou X F, et al. Effects of trimetazidine on myocardial metabolism evaluated by PET-CT in patients with ischemic cardiomyopathy. Zhonghua Xin Xue Guan Bing Za Zhi, 2008, 36: 36–39, 19099925

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiQun Ma.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 3030036)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Bai, L., Li, J. et al. Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart. SCI CHINA SER C 52, 1003–1010 (2009). https://doi.org/10.1007/s11427-009-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0140-2

Keywords

Navigation