Skip to main content

Advertisement

Log in

Time and Time Again: Temporal Processing Demands Implicate Perceptual and Gating Deficits in the HIV-1 Transgenic Rat

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

HIV-1-associated neurocognitive disorders (HAND) afflict up to 50 % of HIV-1+ individuals, despite the effectiveness of combination antiretroviral therapy (CART) in reducing the prevalence of more severe neurocognitive impairment. Alterations in brainstem auditory evoked potentials (BAEP), a measure of temporal processing, are one of the earliest neurological abnormalities of HIV-1-positive individuals. Prepulse inhibition (PPI) of the auditory startle response (ASR), a measure of sensorimotor gating, was studied in HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes. Ovariectomized female Fischer HIV-1 Tg and control rats (ns = 41–42) were tested for PPI at three test periods, with at least 2 months separating each test period, using auditory and visual prepulses, an auditory startle stimulus, and interstimulus intervals (ISI) ranging from 0 to 4000 msec. Auditory and visual prepulse trial blocks were presented in counterbalanced order. For both auditory and visual prepulses, HIV-1 Tg animals exhibited a flatter ISI function, which did not sharpen with age, as it did in controls. Over time, auditory prepulses precipitated a temporal shift in peak inhibition in HIV-1 Tg animals relative to controls, whereas with visual prepulses, both groups displayed peak inhibition at the 40 msec ISI. A lack of perceptual sharpening with age and a relative insensitivity to the temporal dimension of sensorimotor gating are evident in the HIV-1 Tg rat prior to clinical signs of wasting. Deficits in sensorimotor gating may not only provide an early subtle diagnostic marker of HAND, but may also afford a key target for development of potential therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17:639–654

    PubMed  CAS  Google Scholar 

  • Aksenov MY, Aksenova MV, Silvers JM, Mactutus CF, Booze RM (2008) Different effects of selective dopamine uptake inhibitors, GBR 12909 and WIN 35428, on HIV-1 Tat toxicity in rat fetal midbrain neurons. Neurotoxicology 29:971–977

    Article  PubMed  CAS  Google Scholar 

  • Aksenova MV, Silvers JM, Aksenov MY, Nath A, Ray PD, Mactutus CF, Booze RM (2006) HIV-1 Tat neurotoxicity in primary cultures of rat midbrain fetal neurons: changes in dopamine transporter binding and immunoreactivity. Neurosci Lett 395:235–239

    Article  PubMed  CAS  Google Scholar 

  • Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27:86–92

    Article  PubMed  Google Scholar 

  • Bankaitis AE (1995) The effects of click rate on the auditory brain stem response (ABR) in patients with varying degrees of HIV-infection: a pilot study. Ear Hear 16:321–324

    Article  PubMed  CAS  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  PubMed  CAS  Google Scholar 

  • Campbell BA, Haroutunian V (1983) Perceptual sharpening in the developing rat. J Comp Psychol 97:3–11

    Article  PubMed  CAS  Google Scholar 

  • Castello E, Baroni N, Pallestrini E (1998) Neurotological and auditory brain stem response findings in human immunodeficiency virus-positive patients without neurologic manifestations. Ann Otol Rhinol Laryngol 107:1054–1060

    PubMed  CAS  Google Scholar 

  • Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage 42:869–878

    Article  PubMed  Google Scholar 

  • Chao LL, Lindgren JA, Flenniken DL, Weiner MW (2004) ERP evidence of impaired central nervous system function in virally suppressed HIV patients on antiretroviral therapy. Clin Neurophysiol 115:1583–1591

    Article  PubMed  Google Scholar 

  • di Rocco A, Bottiglieri T, Dorfman D, Werner P, Morrison C, Simpson D (2000) Decreased homovanilic acid in cerebrospinal fluid correlates with impaired neuropsychologic function in HIV-1-infected patients. Clin Neuropharmacol 23:190–194

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Deutsch R, Heaton RK, Marcotte TD, McCutchan JA, Nelson JA, Abramson I, Thal LJ, Atkinson JH, Wallace MR, Grant I (1997) Neurocognitive impairment is an independent risk factor for death in HIV infection. Arch Neurol 54:416–424

    Article  PubMed  CAS  Google Scholar 

  • Fein G, Biggins CA, Mackay S (1995) Delayed latency of the event-related brain potential P3A component in HIV disease: progressive effects with increasing cognitive impairment. Arch Neurol 52:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM (2009) The human immunodeficiency virus-1-associated protein, Tat(1-86), impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: a no-net-flux microdialysis study. Neuroscience 159:1292–1299

    Article  PubMed  CAS  Google Scholar 

  • Fitting S, Booze RM, Mactutus CF (2006a) Neonatal hippocampal Tat injections: developmental effects on prepulse inhibition (PPI) of the auditory startle response. Int J Dev Neurosci 24:275–283

    Article  PubMed  CAS  Google Scholar 

  • Fitting S, Booze RM, Mactutus CF (2006b) Neonatal intrahippocampal glycoprotein 120 injection: the role of dopaminergic alterations in prepulse inhibition in adult rats. J Pharmacol Exp Ther 318:1352–1358

    Article  PubMed  CAS  Google Scholar 

  • Frank Y, Pahwa S (1993) Serial brain-stem auditory-evoked responses in infants and children with AIDS. Clin Electroencephalogr 24:160–165

    PubMed  CAS  Google Scholar 

  • Frank Y, Vishnubhakat SM, Pahwa S (1992) Brain stem auditory evoked-responses in infants and children with AIDS. Pediatr Neurol 8:262–266

    Article  PubMed  CAS  Google Scholar 

  • Ganz L (1968) An analysis of generalization behavior in the stimulus deprived organism. In: Newton G, Levine S (eds) Early experience and behavior: The psychobiology of development. Charles C. Thomas, Springfield, pp 365–411

    Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Gibson EJ (1969) Principles of perceptual learning and development. Appleton, New York

    Google Scholar 

  • Gil R, Breux JP, Neu JP, Becq-Giraudon B (1992) Cognitive evoked potentials and HIV infection. Neurophysiol Clin 22:385–391

    Article  PubMed  CAS  Google Scholar 

  • Golob EJ, Irimajiri R, Starr A (2007) Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain 130:740–752

    Article  PubMed  Google Scholar 

  • Goodwin GM, Pretsell DO, Chiswick A, Egan V, Brettle RP (1996) The Edinburgh cohort of HIV-positive injecting drug users at 10 years after infection: a case–control study of the evolution of dementia. AIDS 10:431–440

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb G (1971) Ontogenesis of sensory function in birds and mammals. In: Tobach E, Aronson LR, Shaw E (eds) The biopsychology of development. Academic, New York, pp 67–128

    Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER study. Neurology 75:2087–2096

    Article  PubMed  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HS, Searle JL (1965) Acoustic variables in modification of startle reaction in rat. J Comp Physiol Psychol 60:53–58

    Article  PubMed  CAS  Google Scholar 

  • Hord LL, Booze RM, Mactutus CF (2008) Ontogeny of prepulse inhibition of the acoustic startle response across modality. Abstracts: International Society for Developmental Psychobiology, 41st annual meeting, November 12-15, 2008 Washington D.C. Dev Psychobiol 50:720–750

    Article  Google Scholar 

  • Ison JR, Hammond GR (1971) Modification of startle reflex in rat by changes in auditory and visual environments. J Comp Physiol Psychol 75:435–452

    Article  PubMed  CAS  Google Scholar 

  • Kerr LM, Ostapoff EM, Rubel EW (1979) Influence of acoustic experience on the ontogeny of frequency generalization gradients in the chicken. J Exp Psychol Anim Behav Process 5:97–115

    Article  PubMed  CAS  Google Scholar 

  • Koralnik IJ, Beaumanoir A, Hausler R, Kohler A, Safran AB, Delacoux R et al (1990) A controlled-study of early neurologic abnormalities in men with asymptomatic human-immunodeficiency-virus infection. N Engl J Med 323:864–870

    Article  PubMed  CAS  Google Scholar 

  • Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M (2011) Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol 17:26–40

    Article  PubMed  CAS  Google Scholar 

  • Lalwani AK, Sooy CD (1992) Otologic and neurotologic manifestations of acquired-immunodeficiency-syndrome. Otolaryngol Clin North Am 25:1183–1197

    Google Scholar 

  • Matas CG, Silva SM, Marcon Bde A, Goncalves IC (2010) Electrophysiological manifestations in adults with HIV/AIDS submitted and not submitted to antiretroviral therapy. Pro Fono 22:107–113

    Article  PubMed  Google Scholar 

  • Midde NM, Huang X, Gomez AM, Booze RM, Zhan CG, Zhu J (2013). Mutation of tyrosine 470 of human dopamine transporter is critical for HIV-1 Tat-induced inhibition of dopamine transport and transporter conformational transitions. J Neuroimmune Pharmacol

  • Moran LM, Aksenov MY, Booze RM, Webb KM, Mactutus CF (2012) Adolescent HIV-1 transgenic rats: evidence for dopaminergic alterations in behavior and neurochemistry revealed by methamphetamine challenge. Curr HIV Res 10:415–424

    Article  PubMed  CAS  Google Scholar 

  • Moran LM, Booze RM, Webb KM, Mactutus CF (2013) Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol 239:139–147

    Article  PubMed  CAS  Google Scholar 

  • Moran LM, Mactutus CF, Booze RM (2009) Generality of disruption of prepulse inhibition by the dopamine agonist apomorphine. http://www.cpdd.vcu.edu/Pages/Meetings/CPDD09AbstractBook.pdf Accessed 01 May 2013.

  • Mozes MM, Bryant JL, Franks R, Chan CC, Kopp JB (2002) Congenital nuclear cataracts and uveitis in HIV-transgenic mice. Eye 16:177–184

    Article  PubMed  CAS  Google Scholar 

  • Ollo C, Johnson R, Grafman J (1991) Signs of cognitive change in HIV disease: an event-related brain potential study. Neurology 41:209–215

    Article  PubMed  CAS  Google Scholar 

  • Pagano MA, Cahn PE, Garau ML, Mangone CA, Figini HA, Yorio AA, Dellepiane MC, Amores MG, Perez HM, Casiro AD (1992) Brain stem auditory evoked-potentials in human immunodeficiency virus-seropositive patients with and without acquired-immunodeficiency-syndrome. Arch Neurol 49:166–169

    Article  PubMed  CAS  Google Scholar 

  • Peng JS, Vigorito M, Liu XQ, Zhou DJ, Wu XW, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101

    Article  PubMed  CAS  Google Scholar 

  • Phipps AJ, Hayes KA, Buck WR, Podell M, Mathes LE (2000) Neurophysiologic and immunologic abnormalities associated with feline immunodeficiency virus molecular clone FIV-PPR DNA inoculation. J Acquir Immune Defic Syndr 23:8–16

    PubMed  CAS  Google Scholar 

  • Prospero-Garcia O, Huitron-Resendiz S, Casalman SC, Sanchez-Alavez M, Diaz-Ruiz O, Navarro L, Lerner DL, Phillips TR, Elder JH, Henriksen SJ (1999) Feline immunodeficiency virus envelope protein (FIVgp120) causes electrophysiological alterations in rats. Brain Res 836:203–209

    Article  PubMed  CAS  Google Scholar 

  • Purohit V, Rapaka R, Shurtleff D (2011) Drugs of abuse, dopamine, and HIV-1 associated neurocognitive disorders/HIV-associated dementia. Mol Neurobiol 44:102–110

    Article  PubMed  CAS  Google Scholar 

  • Raymond LA, Wallace D, Berman NEJ, Marcario J, Foresman L, Joag SV, Raghavan R, Narayan O, Cheney PD (1998) Auditory brainstem responses in a Rhesus Macaque model of neuro-AIDS. J Neurovirol 4:512–520

    Article  PubMed  CAS  Google Scholar 

  • Riazi M, Marcario JK, Samson FK, Kenjale H, Adany I, Staggs V, Ledford E, Marquis J, Narayan O, Cheney PD (2009) Rhesus macaque model of chronic opiate dependence and neuro-AIDS: longitudinal assessment of auditory brainstem responses and visual evoked potentials. J Neuroimmune Pharmacol 4:260–275

    Article  PubMed  Google Scholar 

  • Royal W, Zhang L, Guo M, Jones O, Davis H, Bryant JL (2012) Immune activation, viral gene product expression and neurotoxicity in the HIV-1 transgenic rat. J Neuroimmunol 247:16–24

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Rosenthal MH (1975) Ontogeny of auditory frequency generalization in the chicken. J Exp Psychol Anim Behav Process 1:287–297

    Article  PubMed  CAS  Google Scholar 

  • Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8:136–142

    Article  PubMed  Google Scholar 

  • Schroeder MM, Handelsman L, Torres L, Dorfman D, Rinaldi P, Jacobson J, Wiener J, Ritter W (1994) Early and late cognitive event-related potentials mark stages of HIV-1 infection in the drug-user risk group. Biol Psychiatry 35:54–69

    Article  PubMed  CAS  Google Scholar 

  • Schroeder MM, Handelsman L, Torres L, Jacobson J, Ritter W (1996) Consistency of repeated event-related potentials in clinically stable HIV-infected drug users. J Neuropsychiatry Clin Neurosci 8:305–310

    PubMed  CAS  Google Scholar 

  • Silvers JM, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM (2007) Neurotoxicity of HIV-1 tat protein: involvement of D1 dopamine receptor. Neurotoxicology 28:1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Tees RC (1976) Perceptual development in mammals. In: Gottlieb G (ed) Studies on the development of behavior and the nervous system: (Vol. 3), Neural and behavioral specificity. Academic, New York, pp 281–326

    Chapter  Google Scholar 

  • UNAIDS (2011) UNAIDS World AIDS Day Report 2011. http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2011/JC2216_WorldAIDSday_report_2011_en.pdf

  • Vigliano P, Boffi P, Bonassi E, Gandione M, Marotta C, Raino E, Russo R, Rigardetto R (2000) Neurophysiologic exploration: a reliable tool in HIV-1 encephalopathy diagnosis in children. Panminerva Med 42:267–272

    PubMed  CAS  Google Scholar 

  • Wallace DR, Dodson S, Nath A, Booze RM (2006) Estrogen attenuates gp120-and tat(1-72)-induced oxidative stress and prevents loss of dopamine transporter function. Synapse 59:51–60

    Article  PubMed  CAS  Google Scholar 

  • Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458

    Article  PubMed  Google Scholar 

  • Werner H (1948) Comparative psychology of mental development. Follett, Chicago

    Google Scholar 

  • Zhu J, Ananthan S, Mactutus CF, Booze RM (2011) Recombinant human immunodeficiency virus-1 transactivator of transcription(1-86) allosterically modulates dopamine transporter activity. Synapse 65:1251–1254

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Mactutus CF, Wallace DR, Booze RM (2009) HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther 329:1071–1083

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institute on Drug Abuse [RMB, Grant DA013137; CFM, Grant DA031604] and by the National Institute of Child Health and Human Development [CFM, Grant HD043680].

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Mactutus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, L.M., Booze, R.M. & Mactutus, C.F. Time and Time Again: Temporal Processing Demands Implicate Perceptual and Gating Deficits in the HIV-1 Transgenic Rat. J Neuroimmune Pharmacol 8, 988–997 (2013). https://doi.org/10.1007/s11481-013-9472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9472-6

Keywords

Navigation