Skip to main content
Log in

Riluzole Partially Rescues Age-Associated, but not LPS-Induced, Loss of Glutamate Transporters and Spatial Memory

  • BRIEF REPORT
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Impaired memory may result from synaptic glutamatergic dysregulation related to chronic neuroinflammation. GLT1 is the primary excitatory amino acid transporter responsible for regulating extracellular glutamate levels in the hippocampus. We tested the hypothesis that if impaired spatial memory results from increased extracellular glutamate due to age or experimentally induced chronic neuroinflammation in the hippocampus, then pharmacological augmentation of the glutamate transporter GLT1 will attenuate deficits in a hippocampal-dependent spatial memory task. The profile of inflammation-related genes and proteins associated with normal aging, or chronic neuroinflammation experimentally-induced via a four-week LPS infusion into the IVth ventricle, were correlated with performance in the Morris water maze following treatment with Riluzole, a drug that can enhance glutamate clearance by increasing GLT1 expression. Age-associated inflammation was qualitatively different from LPS-induced neuro-inflammation in young rats. LPS produced a pro-inflammatory phenotype characterized by increased IL-1ß expression in the hippocampus, whereas aging was not associated with a strong central pro-inflammatory response but with a mixed peripheral immune phenotype. Riluzole attenuated the spatial memory impairment, the elevation of serum cytokines and the decrease in GLT1 gene expression in Aged rats, but had no effect on young rats infused with LPS. Our findings highlight the therapeutic potential of reducing glutamatergic function upon memory impairment in neurodegenerative diseases associated with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyama H, Barger S, Barnum S et al (2000) Inflammation in Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  Google Scholar 

  • Bardou I, DiPatrizio N, Brothers HM, Kaercher RM, Baranger K, Mitchem M, Hopp SC, Wenk GL, Marchalant Y (2012) Pharmacological manipulation of cannabinoid neurotransmission reduces neuroinflammation associated with normal aging. Health 4:679–684

    Article  Google Scholar 

  • Barrientos RM, Frank MG, Watkins LR, Maier SF (2010) Memory impairments in healthy aging: role of aging-induced microglial sensitization. Aging Dis 1:212–231

    PubMed  PubMed Central  Google Scholar 

  • Begni B, Brighina L, Sirtori E et al (2004) Oxidative stress impairs glutamate uptake in fibroblasts from patients with Alzheimer’s disease. Free Radical Biol Med 37:892–901

    Article  CAS  Google Scholar 

  • Brothers HM, Marchalant Y, Wenk GL (2010) Caffeine attenuates lipopolysaccharide-induced neuroinflammation. Neurosci Lett 480:97–100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers H, Wenk GL, Giovannini MG (2012) The neuron-astrocyte-microglia triad in normal brain aging and a model of neuroinflammation in the rat hippocampus. PlosOne 7:e45250

    Article  CAS  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Colton CA, Wilcock DM (2010) Assessing activation states in Microglia. CNS Neurol Disord Drug Targets 9:174–191

    Article  PubMed  CAS  Google Scholar 

  • Fogal B, Li J, Lobner D, McCullough JD, Hewett SF (2007) System x(c)- activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci 27:10094–10105

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 780:294–303

    Article  PubMed  CAS  Google Scholar 

  • Hauss-Wegrzyniak B, Vraniak P, Wenk GL (1999) The effects of a novel NSAID upon chronic neuroinflammation are age dependent. Neurobiol Aging 20:305–313

    Article  PubMed  CAS  Google Scholar 

  • Jacob CP, Koutsilieri E, Bartl J et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alz Dis 11:97–116

    CAS  Google Scholar 

  • Kamikawa H, Hori T, Nakane H, Aou S, Tashiro N (1998) IL-1beta increases norepinephrine level in rat frontal cortex: involvement of prostanoids, NO, and glutamate. Am J Physiol 275:R803–R810

    PubMed  CAS  Google Scholar 

  • Lauderback CM, Hackett JM, Juang FF et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1-42. J Neurochem 78:413–416

    Article  PubMed  CAS  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    PubMed  CAS  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911

    Article  PubMed  CAS  Google Scholar 

  • Mascarucci P, Perego C, Terrazzino S, De Simoni MG (1998) Glutamate release in the nucleus tractus solitarius induced by peripheral lipopolysaccharide and interleukin-1 beta. Neurosci 86:1285–1290

    Article  CAS  Google Scholar 

  • Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766

    Article  PubMed  CAS  Google Scholar 

  • Milton ID, Banner SJ, Ince PG et al (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immuno-histochemical study. Brain Res Molec Brain Res 52:17–31

    Article  CAS  Google Scholar 

  • Persson M, Brantefjord M, Hansson E, Ronnback L (2005) Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 51:111–120

    Article  PubMed  Google Scholar 

  • Potier B, Billard JM, Riviere S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 33:722–735

    Article  Google Scholar 

  • Prow NA, Irani DN (2008) The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 105:1276–1286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosi S, Ramirez-Amaya V, Hauss-Wegrzyniak B, Wenk GL (2004) Chronic brain inflammation leads to a decline in hippocampal NMDA R1 receptors. J Neuroinflamm 1:12–18

    Article  Google Scholar 

  • Rosi S, Ramirez-Amaya V, Vazdarjanova A, Worley PF, Barnes CA, Wenk GL (2005) Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression. J Neurosci 25:723–731

    Article  PubMed  CAS  Google Scholar 

  • Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142(4):1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Rosi S, Ramirez-Amaya V, Vazdarjanova A, Esperanza E, Larkin P, Fike JR, Wenk GL, Barnes CA (2009) Accuracy of hippocampal network is disrupted by neuroinflammation: rescue by memantine. Brain 132:2464–2486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu GQ, Palop JJ, Mucke L (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. PNAS 109:2895–2903

    Article  Google Scholar 

  • Sasaki K, Shimura H, Itaya M et al (2009) Excitatory amino acid transporter 2 associates with phosphorylated tau and is localized in neurofibrillary tangles of tauopathic brains. FEBS Lett 583:2194–2200

    Article  PubMed  CAS  Google Scholar 

  • Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG (2013) Amyloid-β1–42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 33:5312–5318

    Article  PubMed  CAS  Google Scholar 

  • Scott H, Gebhardt FM, Mitrovic AD, Vanderberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging 32:553.e1–11

    Google Scholar 

  • Van Guilder HD, Bixler GV, Brucklacher RM, Farley JA, Yan H, Warrington JP, Sonntag WE, Freeman WM (2011) Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. J Neuroinflamm 8:138

    Article  Google Scholar 

  • Wenk GL, Parsons CG, Danysz W (2006) Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 17:411–424

    Article  PubMed  CAS  Google Scholar 

  • Woltjer RL, Duerson K, Fullmer JM et al (2010) Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. J Neuropathol Exp Neurol 69:667–676

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wynne AM, Henry CJ, Godbout JP (2009) Immune and behavioral consequences of microglial reactivity in the aged brain. Integr Comp Biol 49:254–266

    Article  PubMed  CAS  Google Scholar 

  • Yoshizumi M, Eisenach JC, Hayashida K (2012) Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes. Eur J Pharmacol 677:87–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Glenn Lin for sharing control tissue for GLT1 staining. Supported by U.S. Public Health Service, RO1 AG030331, RO1 AG037320 to GLW and The Ohio State University Women and Philanthropy Program.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Wenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brothers, H.M., Bardou, I., Hopp, S.C. et al. Riluzole Partially Rescues Age-Associated, but not LPS-Induced, Loss of Glutamate Transporters and Spatial Memory. J Neuroimmune Pharmacol 8, 1098–1105 (2013). https://doi.org/10.1007/s11481-013-9476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9476-2

Keywords

Navigation