Skip to main content

Advertisement

Log in

Alterations in the Levels of Vesicular Trafficking Proteins Involved in HIV Replication in the Brains and CSF of Patients with HIV-associated Neurocognitive Disorders

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus (HIV) associated neurocognitive disorders (HAND) remain prevalent despite improved antiretroviral therapies. A HAND-specific biomarker indicative of neuropsychological impairment (NPI) would give insight into disease progression and aid clinicians in designing therapy. Endosomal sorting complex required for transport (ESCRT) proteins such as tumor susceptibility gene (TSG)-101, vacuolar protein sorting (VPS)-4 and LIP-5 are important for HIV replication and recently antiviral interferon stimulated gene (ISG)-15 was proposed as a biomarker for CNS injury. Here, we analyzed a well-characterized cohort of HIV+ cerebral spinal fluid (CSF) and postmortem brain specimens for multiple vesicular trafficking proteins and a related innate immune protein, ISG-15, TSG-101, VPS-4 and LIP-5. All protein levels trended higher with increased NPI and neuropathology. ISG-15 CSF levels were increased in HIV encephalitis (HIVE) compared to normal cases, and three quarters of HIVE samples had above average CSF ISG-15 levels. VPS-4 CSF levels were increased in NPI/NPI-O compared to normal patients. VPS-4 CSF levels in HIV-associated dementia were equivalent to that of normal patients. LIP-5 CSF levels positively correlate with ISG-15 levels, and higher than average ISG-15 levels indicate elevated viral load. Immunoblot and immunohistochemical analyses show increased expression of ISG-15, VPS-4 and LIP-5 in neuronal cell bodies and astroglial cells. ESCRT protein CSF levels analyzed in conjunction with viral load may be indicative of NPI stage, and may aid in the diagnosis and design of therapies for HIV patients. Further studies on the ESCRT protein expression during HIV infection may lead to a promising biomarker for predicting progression of NPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • (2007) Centers for Disease Control. HIV/AIDS surveillance report.1–54

  • Babst M, Odorizzi G, Estepa EJ, Emr SD (2000) Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1:248–258

    Article  PubMed  CAS  Google Scholar 

  • Budka H, Costanzi G, Cristina S, Lechi A, Parravicini C, Trabattoni R, Vago L (1987) Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol (Berl) 75:185–198

    Article  CAS  Google Scholar 

  • Chen HF, Liu XY (2008) The action of TSG101 on HIV-1 budding and related inhibitors. Yao Xue Xue Bao Acta Pharma Sin 43:1165–1170

    CAS  Google Scholar 

  • Cherner M, Cysique L, Heaton RK, Marcotte TD, Ellis RJ, Masliah E, Grant I (2007) Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. J Neurovirol 13:23–28

    Article  PubMed  Google Scholar 

  • Demirov DG, Ono A, Orenstein JM, Freed EO (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 99:955–960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dupre S, Volland C, Haguenauer-Tsapis R (2001) Membrane transport: ubiquitylation in endosomal sorting. Curr Biol 11:R932–934

    Article  PubMed  CAS  Google Scholar 

  • Everall I, Salaria S, Roberts E, Corbeil J, Sasik R, Fox H, Grant I, Masliah E (2005) Methamphetamine stimulates interferon inducible genes in HIV infected brain. J Neuroimmunol 170:158–171

    Article  PubMed  CAS  Google Scholar 

  • Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM, Masliah E, Commins DL, Brandt D, Grant I, Singer EJ, Levine AJ, Miller J, Winkler JM, Fox HS, Luxon BA, Morgello S (2012) The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One 7:e46178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gendelman H, Lipton S, Tardieu M, Bukrinsky M, Nottet H (1994) The neuropathogenesis of HIV-1 infection. J Leukocyte Biol 56:389–398

    PubMed  CAS  Google Scholar 

  • Gerena Y, Skolasky RL, Velez JM, Toro-Nieves D, Mayo R, Nath A, Wojna V (2012) Soluble and cell-associated insulin receptor dysfunction correlates with severity of HAND in HIV-infected women. PLoS One 7:e37358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grover JR, Llewellyn GN, Soheilian F, Nagashima K, Veatch SL, Ono A (2013) Roles played by capsid-dependent induction of membrane curvature and Gag-ESCRT interactions in tetherin recruitment to HIV-1 assembly sites. J Virol 87:4650–4664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hashimoto M, Sagara Y, Everall IP, Mallory M, Everson A, Langford D, Masliah E (2002) Fibroblast growth factor 1 regulates signaling via the GSK3{beta} pathway: implications for neuroprotection. J Biol Chem 277:32985–32991

    Article  PubMed  CAS  Google Scholar 

  • Havlir DV, Currier JS (2006) Complications of HIV disease and antiretroviral therapy. Top HIV Med Publ Int AIDS Soc USA 14:27–35

    Google Scholar 

  • Heaton RK, Cysique LA, Jin H, Shi C, Yu X, Letendre S, Franklin DR, Ake C, Vigil O, Atkinson JH, Marcotte TD, Grant I, Wu Z (2008) Neurobehavioral effects of human immunodeficiency virus infection among former plasma donors in rural China. J Neurovirol 14:536–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Heaton RK et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096

    Article  PubMed  PubMed Central  Google Scholar 

  • Heaton RK et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Joska JA, Gouse H, Paul RH, Stein DJ, Flisher AJ (2010) Does highly active antiretroviral therapy improve neurocognitive function? A systematic review. J Neurovirol 16:101–114

    Article  PubMed  CAS  Google Scholar 

  • Jouvenet N (2012) Dynamics of ESCRT proteins. Cell Mol Life Sci 69:4121–4133

    Article  PubMed  CAS  Google Scholar 

  • Katsounas A, Hubbard JJ, Wang CH, Zhang X, Dou D, Shivakumar B, Winter S, Schlaak JF, Lempicki RA, Masur H, Polis M, Kottilil S, Osinusi A (2013) High interferon-stimulated gene ISG-15 expression affects HCV treatment outcome in patients co-infected with HIV and HCV. J Med Virol 85:959–963

    Article  PubMed  CAS  Google Scholar 

  • Kuang Z, Seo EJ, Leis J (2011) Mechanism of inhibition of retrovirus release from cells by interferon-induced gene ISG15. J Virol 85:7153–7161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI (2006) Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 80:9465–9480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Kane T, Tipper C, Spatrick P, Jenness DD (1999) Yeast mutants affecting possible quality control of plasma membrane proteins. Mol Cell Biol 19:3588–3599

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lichtfuss GF, Hoy J, Rajasuriar R, Kramski M, Crowe SM, Lewin SR (2011) Biomarkers of immune dysfunction following combination antiretroviral therapy for HIV infection. Biomark Med 5:171–186

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Alford M, Adame A, Rockenstein E, Galasko D, Salmon D, Hansen LA, Thal LJ (2003) Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 61:206–211

    Article  PubMed  CAS  Google Scholar 

  • Merino JJ, Montes ML, Blanco A, Bustos MJ, Oreja-Guevara C, Bayon C, Cuadrado A, Lubrini G, Cambron I, Munoz A, Cebolla S, Gutierrez-Fernandez M, Bernardino JI, Arribas JR, Fiala M (2011) HIV-1 neuropathogenesis: therapeutic strategies against neuronal loss induced by gp120/Tat glycoprotein in the central nervous system. Rev Neurol 52:101–111

    PubMed  CAS  Google Scholar 

  • Montaner JS, Cote HC, Harris M, Hogg RS, Yip B, Chan JW, Harrigan PR, O’Shaughnessy MV (2003) Mitochondrial toxicity in the era of HAART: evaluating venous lactate and peripheral blood mitochondrial DNA in HIV-infected patients taking antiretroviral therapy. J Acquir Immune Defic Syndr 34(Suppl 1):S85–90

    Article  PubMed  CAS  Google Scholar 

  • Nakka VP, Lang BT, Lenschow DJ, Zhang DE, Dempsey RJ, Vemuganti R (2011) Increased cerebral protein ISGylation after focal ischemia is neuroprotective. J Cereb Blood Flow Metab 31:2375–2384

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okumura A, Lu G, Pitha-Rowe I, Pitha PM (2006) Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci U S A 103:1440–1445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pendyala G, Want EJ, Webb W, Siuzdak G, Fox HS (2007) Biomarkers for neuroAIDS: the widening scope of metabolomics. J Neuroimmune Pharmacol 2:72–80

    Article  PubMed  Google Scholar 

  • Pincetic A, Kuang Z, Seo EJ, Leis J (2010) The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J Virol 84:4725–4736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poteet E, Choudhury GR, Winters A, Li W, Ryou MG, Liu R, Tang L, Ghorpade A, Wen Y, Yuan F, Keir ST, Yan H, Bigner DD, Simpkins JW, Yang SH (2013) Reversing the Warburg effect as a treatment for glioblastoma. J Biol Chem 288:9153–9164

    Article  PubMed  CAS  Google Scholar 

  • Sharma TS, Jacobson D, Anderson LM, Gerschenson M, Vandyke R, McFarland E, Miller T (2013) The Relationship between Mitochondrial Dysfunction and Insulin Resistance in HIV-infected Children Receiving Antiretroviral Therapy. AIDS Res Hum Retroviruses 29(9):1211–1217

    Google Scholar 

  • Shim S, Merrill SA, Hanson PI (2008) Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol Biol Cell 19:2661–2672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skaug B, Chen ZJ (2010) Emerging role of ISG15 in antiviral immunity. Cell 143:187–190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases. J Neurosci 29:13578–13588

    Google Scholar 

  • Strathdee SA, O’Shaughnessy MV, Montaner JS, Schechter MT (1996) A decade of research on the natural history of HIV infection: Part 1. Markers. Clin Invest Med Med Clin Exp 19:111–120

    CAS  Google Scholar 

  • VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA (2001) Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci U S A 98:7724–7729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang RG, Kaul M, Zhang DX (2012) Interferon-stimulated gene 15 as a general marker for acute and chronic neuronal injuries. Sheng Li Xue Bao Acta Physiol Sin 64:577–583

    CAS  Google Scholar 

  • Ward DM, Vaughn MB, Shiflett SL, White PL, Pollock AL, Hill J, Schnegelberger R, Sundquist WI, Kaplan J (2005) The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J Biol Chem 280:10548–10555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Institutes of Aging (AG043384), the National Institutes of Mental Health (MH062962, MH5974 and MH83506) and the National Institute for Neurological Disorders and Stroke (1F32NS083426-01) funding this work.

Conflict of interest

The authors of this manuscript declare that there are no actual or potential conflicts of interest. The authors affirm that there are no financial, personal or other relationships with other people or organizations that have inappropriately influenced or biased their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Masliah.

Additional information

Jerel Fields and Wilmar Dumaop contributed equally to manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fields, J., Dumaop, W., Adame, A. et al. Alterations in the Levels of Vesicular Trafficking Proteins Involved in HIV Replication in the Brains and CSF of Patients with HIV-associated Neurocognitive Disorders. J Neuroimmune Pharmacol 8, 1197–1209 (2013). https://doi.org/10.1007/s11481-013-9511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9511-3

Keywords

Navigation