Skip to main content
Log in

Neural regulation of CNS angiogenesis during development

  • Review
  • Published:
Frontiers in Biology

Abstract

Vertebrates have evolved a powerful vascular system that involves close interactions between blood vessels and target tissues. Vascular biology had been mostly focused on the study of blood vessels for decades, which has generated large bodies of knowledge on vascular cell development, function and pathology. We argue that the prime time has arrived for vascular research on vessel-tissue interactions, especially target tissue regulation of vessel development. The central nervous system (CNS) requires a highly efficient vascular system for oxygen and nutrient transport as well as waste disposal. Therefore, neurovascular interaction is an excellent entry point to understanding target tissue regulation of blood vessel development. In this review, we summarize signaling pathways that transmit information from neural cells to blood vessels during development and the mechanisms by which they regulate each step of CNS angiogenesis. We also review important mechanisms of neural regulation of blood-brain barrier establishment and maturation, highlighting different functions of neural progenitor cells and pericytes. Finally, we evaluate potential contribution of malfunctioning neurovascular signaling to the development of brain vascular diseases and discuss how neurovascular interactions could be involved in brain tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott N J, Rönnbäck L, Hansson E (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 7(1): 41–53

    Article  PubMed  CAS  Google Scholar 

  • Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995). Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med, 1(10): 1024–1028

    Article  PubMed  CAS  Google Scholar 

  • Alvarez J I, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre P J, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries H E, Charron F, Prat A (2011). The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 334(6063): 1727–1731

    Article  PubMed  CAS  Google Scholar 

  • Anderson K D, Pan L, Yang XM, Hughes V C, Walls J R, Dominguez M G, Simmons M V, Burfeind P, Xue Y, Wei Y, Macdonald L E, Thurston G, Daly C, Lin H C, Economides A N, Valenzuela D M, Murphy A J, Yancopoulos G D, Gale N W (2011). Angiogenic sprouting into neural tissue requires Gpr124, an orphan G proteincoupled receptor. Proc Natl Acad Sci USA, 108(7): 2807–2812

    Article  PubMed Central  PubMed  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005). Endothelial/pericyte interactions. Circ Res, 97(6): 512–523

    Article  PubMed  CAS  Google Scholar 

  • Arnold T D, Ferrero G M, Qiu H, Phan I T, Akhurst R J, Huang E J, Reichardt L F (2012). Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β. J Neurosci, 32(4): 1197–1206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ballabh P (2010). Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res, 67(1): 1–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, Lou N, Ungvari Z, Goldman S A, Csiszar A, Nedergaard M (2007). Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med, 13(4): 477–485

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland A B, Shi Q, McLendon R E, Bigner D D, Rich J N (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 66(16): 7843–7848

    Article  PubMed  CAS  Google Scholar 

  • Bell R D, Winkler E A, Sagare A P, Singh I, LaRue B, Deane R, Zlokovic B V (2010). Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron, 68(3): 409–427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ben-Zvi A, Lacoste B, Kur E, Andreone B J, Mayshar Y, Yan H, Gu C (2014). Mfsd2a is critical for the formation and function of the bloodbrain barrier. Nature, 509(7501): 507–511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams R H (2009). The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell, 137(6): 1124–1135

    Article  PubMed  CAS  Google Scholar 

  • Berg J N, Gallione C J, Stenzel T T, Johnson DW, Allen W P, Schwartz C E, Jackson C E, Porteous M E, Marchuk D A (1997). The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am J Hum Genet, 61(1): 60–67

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau J J, Neau J P, Parker F, Tremoulet M, Tournier-Lasserve E, the Société Française de Neurochirurgie (2005). Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet, 76(1): 42–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boulday G, Rudini N, Maddaluno L, Blécon A, Arnould M, Gaudric A, Chapon F, Adams R H, Dejana E, Tournier-Lasserve E (2011). Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med, 208(9): 1835–1847

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, Ungvari Z, Csiszar A, Nedergaard M, Ballabh P (2007). Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci, 27(44): 12012–12024

    Article  PubMed  CAS  Google Scholar 

  • Breier G, Albrecht U, Sterrer S, Risau W (1992). Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development, 114(2): 521–532

    PubMed  CAS  Google Scholar 

  • Breier G, Clauss M, Risau W (1995). Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn, 204(3): 228–239

    Article  PubMed  CAS  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg T L, Fuller C, Hamner B, Oh E Y, Gaber M W, Finklestein D, Allen M, Frank A, Bayazitov I T, Zakharenko S S, Gajjar A, Davidoff A, Gilbertson R J (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1): 69–82

    Article  PubMed  CAS  Google Scholar 

  • Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G, Einheber S, Boudreau N, Nishimura S L (2005). Integrin α(v8-mediated activation of transforming growth factor-β by perivascular astrocytes: an angiogenic control switch. Am J Pathol, 166(6): 1883–1894

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clarke M F, Fuller M (2006). Stem cells and cancer: two faces of eve. Cell, 124(6): 1111–1115

    Article  PubMed  CAS  Google Scholar 

  • Cullen M, Elzarrad M K, Seaman S, Zudaire E, Stevens J, Yang M Y, Li X, Chaudhary A, Xu L, Hilton M B, Logsdon D, Hsiao E, Stein E V, Cuttitta F, Haines D C, Nagashima K, Tessarollo L, St Croix B (2011). GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the bloodbrain barrier. Proc Natl Acad Sci USA, 108(14): 5759–5764

    Article  PubMed Central  PubMed  Google Scholar 

  • Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo C J, Barres B A (2009). Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA, 106(2): 641–646

    Article  PubMed Central  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede A A, Barres B A (2010). Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 468(7323): 562–566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doherty P, Williams G, Williams E J (2000). CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci, 16(4): 283–295

    Article  PubMed  CAS  Google Scholar 

  • Dorrell M I, Aguilar E, Friedlander M (2002). Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci, 43(11): 3500–3510

    PubMed  Google Scholar 

  • Gallione C J, Repetto GM, Legius E, Rustgi A K, Schelley S L, Tejpar S, Mitchell G, Drouin E, Westermann C J, Marchuk D A (2004). A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet, 363(9412): 852–859

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol, 161(6): 1163–1177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004). Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn, 231(3): 503–509

    Article  PubMed  CAS  Google Scholar 

  • Gu C, Yoshida Y, Livet J, Reimert D V, Mann F, Merte J, Henderson C E, Jessell TM, Kolodkin A L, Ginty D D (2005). Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science, 307(5707): 265–268

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H (1997). Induction of various blood-brain barrier properties in nonneural endothelial cells by close apposition to co-cultured astrocytes. Glia, 19(1): 13–26

    Article  PubMed  CAS  Google Scholar 

  • Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999). Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126(14): 3047–3055

    PubMed  Google Scholar 

  • Hellström M, Phng L K, Hofmann J J, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A K, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe M L, Kalén M, Gerhardt H, Betsholtz C (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445(7129): 776–780

    Article  PubMed  CAS  Google Scholar 

  • Heuchan A M, Evans N, Henderson Smart D J, Simpson J M (2002). Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995–97. Arch Dis Child Fetal Neonatal Ed, 86(2): F86–F90

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirota S, Liu Q, Lee H S, Hossain M G, Lacy-Hulbert A, McCarty J H (2011). The astrocyte-expressed integrin αvβ8 governs blood vessel sprouting in the developing retina. Development, 138(23): 5157–5166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson DW, Berg J N, Baldwin MA, Gallione C J, Marondel I, Yoon S J, Stenzel T T, Speer M, Pericak-Vance M A, Diamond A, Guttmacher A E, Jackson C E, Attisano L, Kucherlapati R, Porteous M E M, Marchuk D A (1996). Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet, 13(2): 189–195

    Article  PubMed  CAS  Google Scholar 

  • Kuhnert F, Mancuso M R, Shamloo A, Wang H T, Choksi V, Florek M, Su H, Fruttiger M, Young W L, Heilshorn S C, Kuo C J (2010). Essential regulation of CNS angiogenesis by the orphan G proteincoupled receptor GPR124. Science, 330(6006): 985–989

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lang R A, Bishop J M (1993). Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell, 74(3): 453–462

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Kim WJ, Choi Y K, Song H S, Son MJ, Gelman I H, Kim Y J, Kim K W (2003). SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med, 9(7): 900–906

    Article  PubMed  CAS  Google Scholar 

  • Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A, Wang Y, Yang X (2011). Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell, 20(3): 291–302

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla C J, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo M M, von Melchner H, Plate K H, Gerhardt H, Dejana E (2008). Wnt/β-catenin signaling controls development of the blood-brain barrier. J Cell Biol, 183(3): 409–417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lindahl P, Johansson B R, Levéen P, Betsholtz C (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277(5323): 242–245

    Article  PubMed  CAS  Google Scholar 

  • Lobov I B, Brooks P C, Lang R A (2002). Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA, 99(17): 11205–11210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lobov I B, Rao S, Carroll T J, Vallance J E, Ito M, Ondr J K, Kurup S, Glass D A, Patel M S, Shu W, Morrisey E E, McMahon A P, Karsenty G, Lang R A (2005). WNT7b mediates macrophageinduced programmed cell death in patterning of the vasculature. Nature, 437(7057): 417–421

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lobov I B, Renard R A, Papadopoulos N, Gale N W, Thurston G, Yancopoulos G D, Wiegand S J (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA, 104(9): 3219–3224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Louvi A, Chen L, Two A M, Zhang H, Min W, Günel M (2011). Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci USA, 108(9): 3737–3742

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Bréant C, Claes F, De Smet F, Thomas J L, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004). The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature, 432(7014): 179–186

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Kwon H J, Johng H, Zang K, Huang Z (2013). Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol, 11(1): e1001469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta S F, Lampugnani MG, Dejana E (2013). EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature, 498(7455): 492–496

    Article  PubMed  CAS  Google Scholar 

  • McAllister K A, Grogg K M, Johnson DW, Gallione C J, Baldwin M A, Jackson C E, Helmbold E A, Markel D S, McKinnon WC, Murrell J, McCormick M K, Pericak-Vance M A, Heutink P, Oostra B A, Haitjema T, Westerman C J J, Porteous ME, Guttmacher A E, Letarte M, Marchuk D A (1994). Endoglin, a TGFβ binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet, 8(4): 345–351

    Article  PubMed  CAS  Google Scholar 

  • McCarty J H, Monahan-Earley R A, Brown L F, Keller M, Gerhardt H, Rubin K, Shani M, Dvorak H F, Wolburg H, Bader B L, Dvorak AM, Hynes R O (2002). Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking αv integrins. Mol Cell Biol, 22(21): 7667–7677

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moya I M, Umans L, Maas E, Pereira P N, Beets K, Francis A, Sents W, Robertson E J, Mummery C L, Huylebroeck D, Zwijsen A (2012). Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev Cell, 22(3): 501–514

    Article  PubMed  CAS  Google Scholar 

  • Mu D, Cambier S, Fjellbirkeland L, Baron J L, Munger J S, Kawakatsu H, Sheppard D, Broaddus V C, Nishimura S L (2002). The integrin α (v)β8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGFβ1. J Cell Biol, 157(3): 493–507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mu D, Jiang X, Sheldon R A, Fox C K, Hamrick S E, Vexler Z S, Ferriero D M (2003). Regulation of hypoxia-inducible factor 1α and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis, 14(3): 524–534

    Article  PubMed  CAS  Google Scholar 

  • Ng Y S, Rohan R, Sunday M E, Demello D E, D’Amore P A (2001). Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn, 220(2): 112–121

    Article  PubMed  CAS  Google Scholar 

  • Palmer T D, Willhoite A R, Gage F H (2000). Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 425(4): 479–494

    Article  PubMed  CAS  Google Scholar 

  • Pen A, Moreno M J, Durocher Y, Deb-Rinker P, Stanimirovic D B (2008). Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGFβ signaling. Oncogene, 27(54): 6834–6844

    Article  PubMed  CAS  Google Scholar 

  • Phng L K, Potente M, Leslie J D, Babbage J, Nyqvist D, Lobov I, Ondr J K, Rao S, Lang R A, Thurston G, Gerhardt H (2009). Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell, 16(1): 70–82

    Article  PubMed  CAS  Google Scholar 

  • Proctor J M, Zang K, Wang D, Wang R, Reichardt L F (2005). Vascular development of the brain requires β8 integrin expression in the neuroepithelium. J Neurosci, 25(43): 9940–9948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qiu B, Zhang D, Wang C, Tao J, Tie X, Qiao Y, Xu K, Wang Y, Wu A (2011). IL-10 and TGFβ2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep, 38(5): 3585–3591

    Article  PubMed  CAS  Google Scholar 

  • Raab S, Beck H, Gaumann A, Yüce A, Gerber H P, Plate K, Hammes H P, Ferrara N, Breier G (2004). Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost, 91(3): 595–605

    PubMed  CAS  Google Scholar 

  • Risau W (1993). Development of the vascular system of organs and tissues. In: Schaper W, Schaper J, ed. Collateral Circulation. Kluwer Academic Publishers, 17–28

    Google Scholar 

  • Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima D T (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev, 16(20): 2684–2698

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sato T N, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature, 376(6535): 70–74

    Article  PubMed  CAS  Google Scholar 

  • Saunders W B, Bohnsack B L, Faske J B, Anthis N J, Bayless K J, Hirschi K K, Davis G E (2006). Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol, 175(1): 179–191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scott A, Powner MB, Gandhi P, Clarkin C, Gutmann D H, Johnson R S, Ferrara N, Fruttiger M (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS ONE, 5(7): e11863

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shen Q, Goderie S K, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004). Endothelial cells stimulate selfrenewal and expand neurogenesis of neural stem cells. Science, 304(5675): 1338–1340

    Article  PubMed  CAS  Google Scholar 

  • Stenman J M, Rajagopal J, Carroll T J, Ishibashi M, McMahon J, McMahon A P (2008). Canonical Wnt signaling regulates organspecific assembly and differentiation of CNS vasculature. Science, 322(5905): 1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Stewart P A, Wiley M J (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail — chick transplantation chimeras. Dev Biol, 84(1): 183–192

    Article  PubMed  CAS  Google Scholar 

  • Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995). Development of retinal vasculature is mediated by hypoxiainduced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci, 15(7 Pt 1): 4738–4747

    PubMed  CAS  Google Scholar 

  • Stubbs D, DeProto J, Nie K, Englund C, Mahmud I, Hevner R, Molnár Z (2009). Neurovascular congruence during cerebral cortical development. Cereb Cortex, 19(Suppl 1): i32–i41

    Article  PubMed Central  PubMed  Google Scholar 

  • Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007). The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA, 104(9): 3225–3230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon E H, Sato T N, Yancopoulos G D (1998). Increased vascularization in mice overexpressing angiopoietin-1. Science, 282(5388): 468–471

    Article  PubMed  CAS  Google Scholar 

  • Tam S J, Watts R J (2010). Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci, 33(1): 379–408

    Article  PubMed  CAS  Google Scholar 

  • Tchaicha J H, Reyes S B, Shin J, Hossain M G, Lang F F, McCarty J H (2011). Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by β8 integrin. Cancer Res, 71(20): 6371–6381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thurston G, Suri C, Smith K, McClain J, Sato T N, Yancopoulos G D, McDonald D M (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science, 286(5449): 2511–2514

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Ueno M, Sakamoto M, Kitahama Y, Ueki M, Maekawa N, Sakamoto H, Gassmann M, Kageyama R, Ueda N, Gonzalez F J, Takahama Y (2003). Defective brain development in mice lacking the Hif-1α gene in neural cells. Mol Cell Biol, 23(19): 6739–6749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vasudevan A, Long J E, Crandall J E, Rubenstein J L, Bhide P G (2008). Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci, 11(4): 429–439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Volpe J J (2005). Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics, 116(1): 221–225

    Article  PubMed  Google Scholar 

  • Weidenfeller C, Svendsen C N, Shusta E V (2007). Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem, 101(2): 555–565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu B, Crampton S P, Hughes C C (2007). Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity, 26(2): 227–239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang S X, Chen J H, Jiang X F, Wang Q L, Chen Z Q, Zhao W, Feng Y H, Xin R, Shi J Q, Bian X W (2005). Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor. Biochem Biophys Res Commun, 335(2): 523–528

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, Sung J, Xiong X, Munger J S (2007). Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. J Cell Biol, 176(6): 787–793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yao Y, Chen Z L, Norris E H, Strickland S (2014). Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun, 5: 3413

    PubMed Central  PubMed  Google Scholar 

  • Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt L F (2002). β8 integrins are required for vascular morphogenesis in mouse embryos. Development, 129(12): 2891–2903

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zlokovic B V (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57(2): 178–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shang Ma or Zhen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Huang, Z. Neural regulation of CNS angiogenesis during development. Front. Biol. 10, 61–73 (2015). https://doi.org/10.1007/s11515-014-1331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1331-y

Keywords

Navigation