Skip to main content

Advertisement

Log in

Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Electrical stimulation of cutaneous tissue through surface electrodes is an often used method for evoking experimental pain. However, at painful intensities both non-nociceptive Aβ-fibers and nociceptive Aδ- and C-fibers may be activated by the electrical stimulation. This study proposes a finite element (FE) model of the extracellular potential and stochastic branching fiber model of the afferent fiber excitation thresholds. The FE model described four horizontal layers; stratum corneum, epidermis, dermis, and hypodermal used to estimate the excitation threshold of Aβ-fibers terminating in dermis and Aδ-fibers terminating in epidermis. The perception thresholds of 11 electrodes with diameters ranging from 0.2 to 20 mm were modeled and assessed on the volar forearm of healthy human volunteers by an adaptive two-alternative forced choice algorithm. The model showed that the magnitude of the current density was highest for smaller electrodes and decreased through the skin. The excitation thresholds of the Aδ-fibers were lower than the excitation thresholds of Aβ-fibers when current was applied through small, but not large electrodes. The experimentally assessed perception threshold followed the lowest excitation threshold of the modeled fibers. The model confirms that preferential excitation of Aδ-fibers may be achieved by small electrode stimulation due to higher current density in the dermoepidermal junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biurrun Manresa JA, Mørch CD, Andersen OK (2010) Long-term facilitation of nociceptive withdrawal reflexes following low-frequency conditioning electrical stimulation: a new model for central sensitization in humans. Euro J Pain 14(8):822–831

    Article  Google Scholar 

  2. Blair EA, Erlanger J (1933) A comparison of the characteristics of axons through their individual electrical responses. Am J Physiol 106(3):524–564

    Google Scholar 

  3. Bromm B, Meier W (1984) The intracutaneous stimulus—a new pain model for algesimetric studies. Methods Find Exp Clin Pharmacol 6(7):405–410

    PubMed  CAS  Google Scholar 

  4. Drewes AM, Helweglarsen S, Petersen P, Brennum J, Andreasen A, Poulsen LH, Jensen TS (1993) Mcgill pain questionnaire translated into Danish—experimental and clinical findings. Clin J Pain 9(2):80–87

    Article  PubMed  CAS  Google Scholar 

  5. Ebenezer GJ, Hauer P, Gibbons C, McArthur JC, Polydefkis M (2007) Assessment of epidermal nerve fibers: a new diagnostic and predictive tool for peripheral neuropathies. J Neuropathol Exp Neurol 66(12):1059–1073

    Article  PubMed  Google Scholar 

  6. Fornage BD, McGavran MH, Duvic M, Waldron CA (1993) Imaging of the skin with 20-MHz US. Radiology 189(1):69–76

    PubMed  CAS  Google Scholar 

  7. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41(11):2251–2269

    Article  PubMed  CAS  Google Scholar 

  8. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249

    Article  PubMed  CAS  Google Scholar 

  9. Gabriel C, Peyman A, Grant EH (2009) Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol 54(16):4863–4878

    Article  PubMed  CAS  Google Scholar 

  10. Gardner EP, Martin JH, Jessell TM (2000) The Bodily Senses. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of Neural Science, 4th edn. McGraw-Hill, New York, pp 430–450

    Google Scholar 

  11. GA Gescheider (1997) Psychophysics.In: The Fundamentals.Lawrence Erlbaum Associates, Mahwah

  12. Hilliges M, Wang LX, Johansson O (1995) Ultrastructural evidence for nerve-fibers within all vital layers of the human epidermis. J Invest Dermatol 104(1):134–137

    Article  PubMed  CAS  Google Scholar 

  13. Iggo A, Andres KH (1982) Morphology of cutaneous receptors. Annu Rev Neurosci 5:1–31

    Article  PubMed  CAS  Google Scholar 

  14. Inui K, Tran TD, Hoshiyama M, Kakigi R (2002) Preferential stimulation of A-delta fibers by intra-epidermal needle electrode in humans. Pain 96(3):247–252

    Article  PubMed  Google Scholar 

  15. Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26(12):696–705

    Article  PubMed  CAS  Google Scholar 

  16. Johansson RS, Vallbo AB (1979) Detection of tactile stimuli—thresholds of afferent units related to psychophysical thresholds in the human hand. J Physiol 297:405–422

    PubMed  CAS  Google Scholar 

  17. Kaube H, Katsarava Z, Kaufer T, Diener HC, Ellrich J (2000) A new method to increase nociception specificity of the human blink reflex. Clin Neurophysiol 111(3):413–416

    Article  PubMed  CAS  Google Scholar 

  18. Klein T, Magerl W, Hopf HC, Sandkuhler J, Treede RD (2004) Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 24(4):964–971

    Article  PubMed  CAS  Google Scholar 

  19. Krackowizer P, Brenner E (2008) Thickness of the human skin: 24 points of measurement. Phlebologie 37(2):83–92

    Google Scholar 

  20. Kuhn A, Keller T, Lawrence M, Morari M (2009) A model for transcutaneous current stimulation: simulations and experiments. Med Biol Eng Comput 47(3):279–289

    Article  PubMed  Google Scholar 

  21. Kuhn A, Keller T, Micera S, Morari M (2009) Array electrode design for transcutaneous electrical stimulation: a simulation study. Med Eng Phys 31(8):945–951

    Article  PubMed  Google Scholar 

  22. Lauria G, Cornblath DR, Johansson O, McArthur JC, Mellgren SI, Nolano M, Rosenberg N, Sommer C (2005) EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol 12(10):747–758

    Article  PubMed  CAS  Google Scholar 

  23. McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995–1006

    PubMed  Google Scholar 

  24. Mcneal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23(4):329–337

    Article  PubMed  CAS  Google Scholar 

  25. Melzack R (1975) The McGill pain questionnaire: major properties and scoring methods. Pain 1(3):277–299

    Article  PubMed  CAS  Google Scholar 

  26. Neerken S, Lucassen GW, Bisschop MA, Lenderink E, Nuijs TAM (2004) Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt 9(2):274–281

    Article  PubMed  Google Scholar 

  27. Nilsson HJ, Levinsson A, Schouenborg J (1997) Cutaneous field stimulation (CFS): a new powerful method to combat itch. Pain 71(1):49–55

    Article  PubMed  CAS  Google Scholar 

  28. Nolano M, Provitera V, Crisci C, Stancanelli A, Wendelschafer-Crabb G, Kennedy WR, Santoro L (2003) Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol 54(2):197–205

    Article  PubMed  Google Scholar 

  29. Ochoa J, Torebjork E (1989) “Sensations evoked by intraneural microstimulation of C nociceptor fibers in human-skin nerves”. J Physiol 415:583–599

    PubMed  CAS  Google Scholar 

  30. Peng YB, Ringkamp M, Campbell JN, Meyer RA (1999) Electrophysiological assessment of the cutaneous arborization of A delta-fiber nociceptors. J Neurophysiol 82(3):1164–1177

    PubMed  CAS  Google Scholar 

  31. Provitera V, Nolano M, Pagano A, Caporaso G, Stancanelli A, Santoro L (2007) Myelinated nerve endings in human skin. Muscle Nerve 35(6):767–775

    Article  PubMed  Google Scholar 

  32. Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 33(10):974–977

    Article  PubMed  CAS  Google Scholar 

  33. Rattay F (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36(7):676–682

    Article  PubMed  CAS  Google Scholar 

  34. Reilly DM, Ferdinando D, Johnston C, Shaw C, Buchanan KD, Green MR (1997) The epidermal nerve fibre network: characterization of nerve fibres in human skin by confocal microscopy and assessment of racial variations. Br J Dermatol 137(2):163–170

    Article  PubMed  CAS  Google Scholar 

  35. Rottmann S, Jung K, Ellrich J (2009) Electrical low-frequency stimulation induces long-term depression of sensory and affective components of pain in healthy man. Euro J Pain 14(4):359–365

    Article  Google Scholar 

  36. Sandby-Moller J, Poulsen T, Wulf HC (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 83(6):410–413

    Article  PubMed  Google Scholar 

  37. Sandkuhler J, Liu XG (1998) Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10(7):2476–2480

    Article  PubMed  CAS  Google Scholar 

  38. Sha N, Kenney LPJ, Heller BW, Barker AT, Howard D, Moatamedi M (2008) A finite element model to identify electrode influence on current distribution in the skin. Artif Organs 32(8):639–643

    Article  PubMed  Google Scholar 

  39. Tavernier A, Dierickx M, Hinsenkamp M (1993) Tensors of dielectric permittivity and conductivity of in vitro human dermis and epidermis. Bioelectrochem Bioenerg 30:65–72

    Article  Google Scholar 

  40. Wall PD (1978) Gate control-theory of pain mechanisms—re-examination and re-statement. Brain 101:1–18

    Article  PubMed  CAS  Google Scholar 

  41. Weaver JC (1993) Electroporation—a general phenomenon for manipulating cells and tissues. J Cell Biochem 51(4):426–435

    PubMed  CAS  Google Scholar 

  42. Weidner C, Schmidt R, Schmelz M, Torebjork HE, Handwerker HO (2003) Action potential conduction in the terminal arborisation of nociceptive C-fibre afferents. J Physiol 547(3):931–940

    Article  PubMed  CAS  Google Scholar 

  43. Woock J, Yoo P, Grill W (2010) Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers. BMC Urol 10(1):11

    Article  PubMed  Google Scholar 

  44. Yamamoto T, Yamamoto Y (1976) Electrical-properties of epidermal stratum-corneum. Med Biol Eng 14(2):151–158

    Article  PubMed  CAS  Google Scholar 

  45. Yamamoto T, Yamamoto Y (1981) Non-linear electrical-properties of skin in the low-frequency range. Med Biol Eng Comput 19(3):302–310

    Article  PubMed  CAS  Google Scholar 

  46. Yoshida K, Inmann A, Haugland MK (1999) Measurement of complex impedance spectra of implanted electrodes. In: IFESS 1999 proceedings of the 4th annual conference of the international functional electrical stimulation society,Sendai, 267–269 Aug 1999

Download references

Acknowledgment

The project was financed by The Danish Council for Independent Research | Technology and Production Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Dahl Mørch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mørch, C.D., Hennings, K. & Andersen, O.K. Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model. Med Biol Eng Comput 49, 385–395 (2011). https://doi.org/10.1007/s11517-010-0725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0725-8

Keywords

Navigation