Skip to main content
Log in

Oscillator-based assistance of cyclical movements: model-based and model-free approaches

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this article, we propose a new method for providing assistance during cyclical movements. This method is trajectory-free, in the sense that it provides user assistance irrespective of the performed movement, and requires no other sensing than the assisting robot’s own encoders. The approach is based on adaptive oscillators, i.e., mathematical tools that are capable of learning the high level features (frequency, envelope, etc.) of a periodic input signal. Here we present two experiments that we recently conducted to validate our approach: a simple sinusoidal movement of the elbow, that we designed as a proof-of-concept, and a walking experiment. In both cases, we collected evidence illustrating that our approach indeed assisted healthy subjects during movement execution. Owing to the intrinsic periodicity of daily life movements involving the lower-limbs, we postulate that our approach holds promise for the design of innovative rehabilitation and assistance protocols for the lower-limb, requiring little to no user-specific calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (alex). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8

    Article  PubMed  Google Scholar 

  2. Bizzi E, Cheung VCK, d’Avella A, Saltiel P, Tresch M (2008) Combining modules for movement. Brain Res Rev 57(1):125–133

    Article  PubMed  CAS  Google Scholar 

  3. Brockway JM (1987) Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr 41(6):463–471

    PubMed  CAS  Google Scholar 

  4. Buchli J, Righetti L, Ijspeert AJ (2008) Frequency analysis with coupled nonlinear oscillators. Physica D 237:1705–1718

    Article  Google Scholar 

  5. Cavallaro E, Rosen J, Perry J, Burns S (2006) Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans Biomed Eng 53(11):2387–2396

    Article  PubMed  Google Scholar 

  6. Dankaerts W, O’Sullivan PB, Burnett AF, Straker LM, Danneels LA (2004) Reliability of emg measurements for trunk muscles during maximal and sub-maximal voluntary isometric contractions in healthy controls and clbp patients. J Electromyogr Kinesiol 14(3):333–342

    Article  PubMed  Google Scholar 

  7. De Rossi SMM, Vitiello N, Lenzi T, Ronsse R, Koopman B, Persichetti A, Vecchi F, Ijspeert AJ, van der Kooij H, Carrozza MC (2011) Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. Sensors 11(1):207–227

    Article  Google Scholar 

  8. Dégallier S, Ijspeert A (2010) Modeling discrete and rhythmic movements through motor primitives: a review. Biol Cybern 103(4):319–338

    Article  PubMed  Google Scholar 

  9. Dollar A, Herr H (2008) Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans Robotics 24(1):144–158

    Article  Google Scholar 

  10. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R (2010) Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 18(1):38–48

    Article  PubMed  Google Scholar 

  11. Edgerton VR, Roy RR (2009) Robotic training and spinal cord plasticity. Brain Res Bull 78(1):4–12

    Article  PubMed  Google Scholar 

  12. Emken J, Harkema S, Beres-Jones J, Ferreira C, Reinkensmeyer D (2008) Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng 55(1):322–334

    Article  PubMed  Google Scholar 

  13. Ferris DP (2009) The exoskeletons are here. J Neuroeng Rehabil 6:17–0

    Article  PubMed  Google Scholar 

  14. Gams A, Ijspeert AJ, Schaal S, Lenarčič J (2009) On-line learning and modulation of periodic movements with nonlinear dynamical systems. Auton Robot 27:3–23

    Article  Google Scholar 

  15. Goswami A, Thuilot B, Espiau B (1998) A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int J Robotics Res 17(12):1282–1301

    Article  Google Scholar 

  16. Hart CB, Giszter SF (2010) A neural basis for motor primitives in the spinal cord. J Neurosci 30(4):1322–1336

    Article  PubMed  CAS  Google Scholar 

  17. Ijspeert A, Nakanishi J, Schaal S (2003) Learning attractor landscapes for learning motor primitives. In: Advances in neural Information processing systems, vol 15, MIT Press, Cambridge, pp 1547–1554

  18. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  PubMed  Google Scholar 

  19. Jezernik S, Colombo G, Morari M (2004) Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis. IEEE Trans Robot Autom 20(3):574–582

    Google Scholar 

  20. Kawamoto H, Sankai Y (2005) Power assist method based on phase sequence and muscle force condition for HAL. Advanced Robotics 19(7):717–734

    Article  Google Scholar 

  21. Kiguchi K, Iwami K, Yasuda M, Watanabe K, Fukuda T (2003) An exoskeletal robot for human shoulder joint motion assist. Mechatronics, IEEE/ASME Transactions on 8(1):125–135

    Article  Google Scholar 

  22. Kinnaird C, Ferris D (2009) Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton. IEEE Trans Neural Syst Rehabil Eng 17(1):31–37

    Article  PubMed  Google Scholar 

  23. Lenzi T, De Rossi S, Vitiello N, Chiri A, Roccella S, Giovacchini F, Vecchi F, Carrozza MC (2009) The neuro-robotics paradigm: NEURARM, NEUROE xos, HANDEXOS. In: Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2009, pp 2430–2433

  24. Ljung L, Söderström T (1983) Theory and Practice of Recursive Identification. The MIT Press Signal Processing, Optimization, and Control Series, The MIT Press, Cambridge, Massachusetts

  25. Nef T, Lum P (2009) Improving backdrivability in geared rehabilitation robots. Med Biol Eng Comput 47(4):441–447

    Article  PubMed  Google Scholar 

  26. Pratt GA, Williamson MM (1995) Series elastic actuators. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems 95. ’Human Robot Interaction and Cooperative Robots’, vol 1, pp 399–406

  27. Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V (2005) Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 13(3):380–394

    Article  PubMed  Google Scholar 

  28. Righetti L, Ijspeert AJ (2006) Programmable central pattern generators: an application to biped locomotion control. In: Proc. IEEE International Conference on Robotics and Automation ICRA 2006, pp 1585–1590

  29. Righetti L, Buchli J, Ijspeert AJ (2006) Dynamic hebbian learning in adaptive frequency oscillators. Physica D 216:269–281

    Article  CAS  Google Scholar 

  30. Righetti L, Buchli J, Ijspeert AJ (2009) Adaptive frequency oscillators and applications. The Open Cybernetics and Systemics Journal 3:64–69

    Article  Google Scholar 

  31. Rinderknecht MD, Delaloye FA, Crespi A, Ronsse R, Ijspeert AJ (2011) Assistance using adaptive oscillators: Robustness to errors in the identification of the limb parameters. In: Rehabilitation Robotics, 2011 IEEE International Conference on, pp 210–215

  32. Rocon E, Belda-Lois J, Ruiz A, Manto M, Moreno J, Pons J (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 15(3):367–378

    Article  PubMed  CAS  Google Scholar 

  33. Ronsse R, Vitiello N, Lenzi T, van den Kieboom J, Carrozza MC, Ijspeert AJ (2010) Adaptive oscillators with human-in-the-loop: Proof of concept for assistance and rehabilitation. In: Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, pp 668–674

  34. Ronsse R, Vitiello N, Lenzi T, van den Kieboom J, Carrozza MC, Ijspeert AJ (2011) Human-robot synchrony: Flexible assistance using adaptive oscillators. IEEE Trans Biomed Eng 58(4):1001–1012

    Article  PubMed  Google Scholar 

  35. Ronsse R, Koopman B, Vitiello N, Lenzi T, De Rossi SMM, van den Kieboom J, van Asseldonk E, Carrozza MC, van des Kooij H, Ijspeert AJ (2011) Oscillator-based Walking Assistance: a Model-free Approach. In: Rehabilitation Robotics, 2011 IEEE International Conference on, pp 216–221

  36. Rosen J, Brand M, Fuchs MB, Arcan M (2001) A myosignal-based powered exoskeleton system. IEEE Trans Syst, Man, Cybern A, Syst, Humans 31(3):210–222

    Article  Google Scholar 

  37. Sawicki GS, Ferris DP (2008) Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol 211(Pt 9):1402–1413

    Article  PubMed  Google Scholar 

  38. Sawicki GS, Ferris DP (2009) Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J Exp Biol 212(Pt 1):21–31

    Article  PubMed  Google Scholar 

  39. Schaal S (2007) The new robotics—towards human-centered machines. HFSP Journal 1(2):115–26

    Article  PubMed  Google Scholar 

  40. Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information. Neural Comput 10(8):2047–2084

    Article  PubMed  Google Scholar 

  41. Schiele A, van der Helm F (2006) Kinematic design to improve ergonomics in human machine interaction. IEEE Trans Neural Syst Rehabil Eng 14(4):456–469

    Article  PubMed  Google Scholar 

  42. Strogatz SH (2003) Sync: The Emerging Science of Spontaneous Order. Hyperion, New York

  43. Unal R, Behrens S, Carloni R, Hekman E, Stramigioli S, Koopman H (2010) Prototype design and realization of an innovative energy efficient transfemoral prosthesis. In: Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, pp 191 –196

  44. Vallery H, Veneman J, van Asseldonk E, Ekkelenkamp R, Buss M, van Der Kooij H (2008) Compliant actuation of rehabilitation robots. IEEE Robotics Automation Magazine 15(3):60–69

    Article  Google Scholar 

  45. Vallery H, van Asseldonk EHF, Buss M, van der Kooij H (2009) Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. IEEE Trans Neural Syst Rehabil Eng 17(1):23–30

    Article  PubMed  Google Scholar 

  46. Vallery H, Duschau-Wicke A, Riener R (2009) Optimized passive dynamics improve transparency of haptic devices. In: Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on, pp 301–306

  47. van Asseldonk EHF, Ekkelenkamp R, Veneman JF, Van der Helm FCT, van der Kooij H (2007) Selective control of a subtask of walking in a robotic gait trainer(lopes). In: Proc. IEEE 10th International Conference on Rehabilitation Robotics ICORR 2007, pp 841–848

  48. van Asseldonk EHF, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FCT, van der Kooij H (2008) The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng 16(4):360–370

    Article  PubMed  Google Scholar 

  49. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Asseldonk EHFV, van der Kooij H (2007) Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386

    Article  PubMed  Google Scholar 

  50. Verdaasdonk BW, Koopman HFJM, van der Helm FCT (2009) Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control. Biol Cybern 101(1):49–61

    Article  PubMed  CAS  Google Scholar 

  51. Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. International Journal of Humanoid Robotics 4(3):487–506

    Article  Google Scholar 

  52. White O, Bleyenheuft Y, Ronsse R, Smith AM, Thonnard JL, Lefèvre P (2008) Altered gravity highlights central pattern generator mechanisms. J Neurophysiol 100(5):2819–2824

    Article  PubMed  Google Scholar 

  53. Winter DA (2009) Biomechanics and Motor Control of Human Movement, 4th edn. Wiley, New Jersey

  54. Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16(3):286–297

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were funded by the EU within the EVRYON Collaborative Project STREP (FP7-ICT-2007-3-231451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Ronsse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronsse, R., Lenzi, T., Vitiello, N. et al. Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Med Biol Eng Comput 49, 1173–1185 (2011). https://doi.org/10.1007/s11517-011-0816-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0816-1

Keywords

Navigation