Skip to main content
Log in

Correlation analysis of laser Doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Measurement and analysis of microcirculation is vital in assessing local and systemic tissue health. Changes in microvascular perfusion if detected can provide information on the development of various related diseases. Laser Doppler blood flowmetry (LDF) provides a non-invasive real-time measurement of cutaneous blood perfusion. LDF signals possess fractal nature that represents the correlation in the successive signal elements. Changes in the correlation of flow and its associated parameters could be used as a tool in differentiating the ailments at different stages or assessing the treatment effectiveness of a particular ailment. Spectral domain analysis of LDF signals reveals five characteristic frequency peaks corresponding to local and central regulatory mechanisms of the human body, namely metabolic, neurogenic, myogenic, respiration, and heart rate. This paper investigates the changes in the fractal nature and constituent frequency bands of laser Doppler signals in diabetic and healthy control subjects acquired from the glabrous skin of the foot so as to provide an assessment of microcirculatory dynamics. As a pilot study, it was attempted on a set of healthy control and diabetic volunteers, and the obtained results indicate that fractal nature of LDF signals is less in diabetic subjects compared to the healthy control. The wavelet analysis carried out on the set of signals reveals the dynamics of blood flow which may have led to the difference in correlation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anand S, Sujatha N, Narayanamurthy VB, Seshadri V, Poddar R (2014) Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer—a pilot study. Opt Lasers Eng. doi:10.1016/j.optlaseng.2013.07.020

    Google Scholar 

  2. Arakelyan SM, Kucherik AO, Prokoshev VG, Troitskii DP, Shishkina MV (2010) Nonlinear signal processing of laser Doppler flowmetry records. Biomed Technol Radio Electron 7:29–32

    Google Scholar 

  3. Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335(1):165–189. doi:10.1007/s00441-008-0685-6

    Article  CAS  PubMed  Google Scholar 

  4. Barnes MD, Peppiatt TN, Mani R (1991) Glimpses into measurements of the microcirculation in skin. In: 30th Annual meeting of the biological engineering society, 18 Sept 1990–20 Sept 1990, Durham, NC, USA, J Biomed Eng, pp 185–188

  5. Bernjak A, Stefanovska A, Urbancic-Rovan V, Azman-Juvan K (2005) Quantitative assessment of oscillatory components in blood circulation: classification of the effect of aging, diabetes, and acute myocardial infarction. In: Advanced biomedical and clinical diagnostic systems III, 23 Jan 2005, USA. Proceedings of the SPIE International Society Optics Engineering (USA). SPIE Int Soc Opt Eng, pp 163–173. doi:10.1117/12.589572

  6. Bondar IA, Klimontov VV, Korolyova EA (2002) Autonomic neuropathy in diabetes: early detection and the role in development of microvascular complications. In: Proceedings 6th Russian-Korean international symposium on science and technology, 24–30 June 2002, Piscataway, NJ, USA, Proceedings 6th Russian-Korean international symposium on science and technology. KORUS-2002 (Cat. No. 02EX565). IEEE, pp 464–467. doi:10.1109/KORUS.2002.1028065

  7. Bračič M, Stefanovska A (1998) Wavelet-based analysis of human blood-flow dynamics. Bull Math Biol 60(5):919–935. doi:10.1006/bulm.1998.0047

    Article  PubMed  Google Scholar 

  8. Braverman IM (2000) The cutaneous microcirculation. J Investig Dermatol Symp Proc 5(1):3–9. doi:10.1046/j.1087-0024.2000.00010.x

    Article  CAS  PubMed  Google Scholar 

  9. Briers JD (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22(4):R35–R66

    Article  CAS  PubMed  Google Scholar 

  10. Cameron NE, Eaton SE, Cotter MA, Tesfaye S (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44(11):1973–1988. doi:10.1007/s001250100001

    Article  CAS  PubMed  Google Scholar 

  11. Campos R, Figueiras E, Ferreira LFR, Humeau-Heurtier A (2012) Spectral analysis of laser Doppler flowmetry signals. In: Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese meeting in, 23–25 Feb 2012, pp 1–6. doi:10.1109/ENBENG.2012.6331342

  12. Cannon MJ, Percival DB, Caccia DC, Raymond GM, Bassingthwaighte JB (1997) Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Phys A 241(3–4):606–626. doi:10.1016/s0378-4371(97)00252-5

    Article  Google Scholar 

  13. Carolan-Rees G, Tweddel AC, Naka KK, Griffith TM (2002) Fractal dimensions of laser Doppler flowmetry time series. Med Eng Phys 24(1):71–76

    Article  CAS  PubMed  Google Scholar 

  14. Chih-Hui H, Eng-Kean Y, Kang-Ping L (2003) Portable laser Doppler flowmetry in studying the effect of diabetes mellitus on cutaneous microcirculation. J Med Biol Eng 23(1):13–18

    Google Scholar 

  15. Cobb JE, Claremont DJ (2002) In-shoe measurement of plantar blood flow in diabetic subjects: results of a preliminary clinical evaluation. Physiol Meas 23(2):287–299. doi:10.1088/0967-3334/23/2/305

    Article  CAS  PubMed  Google Scholar 

  16. De Moortel I, Munday SA, Hood AW (2004) Wavelet analysis: the effect of varying basic wavelet parameters. Sol Phys 222(2):203–228. doi:10.1023/B:SOLA.0000043578.01201.2d

    Article  Google Scholar 

  17. Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla I, Ikrenyi C (2000) Physiological time series: distinguishing fractal noises from motions. Pflug Arch 439(4):403–415

    Article  CAS  Google Scholar 

  18. Eke A, Herman P, Kocsis L, Kozak LR (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas 23(1):R1–R38

    Article  CAS  PubMed  Google Scholar 

  19. Galli AW, Heydt GT, Ribeiro PF (1996) Exploring the power of wavelet analysis. Comput Appl Power IEEE 9(4):37–41. doi:10.1109/67.539845

    Article  Google Scholar 

  20. Glenny RW, Robertson HT, Yamashiro S, Bassingthwaighte JB (1991) Applications of fractal analysis to physiology. J Appl Physiol (Bethesda, MD: 1985) 70(6):2351–2367

    CAS  Google Scholar 

  21. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(Suppl 1):2466–2472. doi:10.1073/pnas.012579499

    Article  PubMed Central  PubMed  Google Scholar 

  22. Goldberger AL, West BJ (1987) Fractals in physiology and medicine. Yale J Biol Med 60(5):421–435

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Greenman RL, Panasyuk S, Wang X, Lyons TE, Dinh T, Longoria L, Giurini JM, Freeman J, Khaodhiar L, Veves A (2005) Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet 366(9498):1711–1717. doi:10.1016/s0140-6736(05)67696-9

    Article  CAS  PubMed  Google Scholar 

  24. IDF Diabetic Atlas (2013) 6th edition International Diabetes Federation

  25. James PE, Lang D, Tufnell-Barret T, Milsom AB, Frenneaux MP (2004) Vasorelaxation by red blood cells and impairment in diabetes: reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circ Res 94(7):976–983. doi:10.1161/01.res.0000122044.21787.01

    Article  CAS  PubMed  Google Scholar 

  26. Kalani M (2008) The importance of endothelin-1 for microvascular dysfunction in diabetes. Vasc Health Risk Manag 4(5):1061–1068

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Klinkenberg B (1994) A review of methods used to determine the fractal dimension of linear features. Math Geol 26(1):23–46. doi:10.1007/BF02065874

    Article  CAS  Google Scholar 

  28. Kun H, Peng CK, Huang NE, Zhaohua W, Lipsitz LA, Cavallerano J, Novak V (2008) Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: nonlinear assessment of cerebral autoregulation. Phys A 387(10):2279–2292. doi:10.1016/j.physa.2007.11.052

    Article  Google Scholar 

  29. Kvandal P, Stefanovska A, Veber M, Kvernmo HD, Kirkeboen KA (2003) Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandines. Microvasc Res 65(3):160–171

    Article  CAS  PubMed  Google Scholar 

  30. Kvernmo HD, Stefanovska A, Bracic M, Kirkebøen KA, Kvernebo K (1998) Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise. Microvasc Res 56(3):173–182. doi:10.1006/mvre.1998.2108

    Article  CAS  PubMed  Google Scholar 

  31. Liu D, Wood NB, Xu XY, Witt N, Hughes AD, Thom SA (2008) Image-based blood flow simulation in the retinal circulation. In: 4th European conference of the international federation for medical and biological engineering, ECIFMBE 2008, 23 Nov 2008–27 Nov 2008, Antwerp, Belgium, 2008. IFMBE Proceedings. Springer, Berlin, pp 1963–1966. doi:10.1007/978-3-540-89208-3_468

  32. Meglinski IV Diffusing wave spectroscopy and its application for monitoring of skin blood microcirculation. In: Saratov Fall Meeting 2002 Optical Technologies in Biophysics and Medicine IV, 1 Oct 2002–4 Oct 2002, Saratov, Russia, 2002. Proceedings of SPIE—the International Society for Optical Engineering. SPIE, pp 163–169. doi:10.1117/12.518758

  33. Obeid AN (1993) In vitro comparison of different signal processing algorithms used in laser Doppler flowmetry. Med Biol Eng Comput 31(1):43–52

    Article  CAS  PubMed  Google Scholar 

  34. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, NY) 5(1):82–87. doi:10.1063/1.166141

    Article  CAS  Google Scholar 

  35. Petrofsky J (2011) A method of measuring the interaction between skin temperature and humidity on skin vascular endothelial function in people with diabetes. J Med Eng Technol 35(6–7):330–337. doi:10.3109/03091902.2011.592237

    Article  PubMed  Google Scholar 

  36. Pieper GM (1998) Review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial dysfunction. Hypertension 31(5):1047–1060

    Article  CAS  PubMed  Google Scholar 

  37. Popivanov D, Mineva A, Bendayan P, Leger P, Boccalon H, Moller KO (1999) Dynamic characteristics of laser-Doppler flux in normal individuals and patients with Raynaud’s phenomenon before and after treatment with nifedipine under different thermal conditions. Technol Health Care 7(2/3):193–203

    CAS  PubMed  Google Scholar 

  38. Rioul O, Vetterli M (1991) Wavelets and signal processing. Sig Process Mag IEEE 8(4):14–38. doi:10.1109/79.91217

    Article  Google Scholar 

  39. Sancho RAS, Pastore GM (2012) Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int 46(1):378–386. doi:10.1016/j.foodres.2011.11.021

    Article  CAS  Google Scholar 

  40. Sanka SC, Bennett DC, Rojas JD, Tasby GB, Meininger CJ, Wu G, Wesson DE, Pfarr C, Martinez-Zaguilan R (2000) Ca2+ homeostasis in microvascular endothelial cells from an insulin dependent diabetic model: role of endosomes/lysosomes. In: Proceedings of SPIE—the International Society for Optical Engineering, vol 3924, pp 56–66

  41. Shiogai Y, Stefanovska A, McClintock PV (2010) Nonlinear dynamics of cardiovascular ageing. Phys Rep 488(2–3):51–110. doi:10.1016/j.physrep.2009.12.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shyh-Jier H, Cheng-Tao H, Ching-Lien H (1999) Application of Morlet wavelets to supervise power system disturbances. Power Deliv IEEE Trans 14(1):235–243. doi:10.1109/61.736728

    Article  Google Scholar 

  43. Soderstrom T, Stefanovska A, Veber M, Svensson H (2003) Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am J Physiol Heart Circ Physiol 284(5):H1638–H1646. doi:10.1152/ajpheart.00826.2000

    Article  CAS  PubMed  Google Scholar 

  44. Sokolnicki LA, Roberts SK, Wilkins BW, Basu A, Charkoudian N (2007) Contribution of nitric oxide to cutaneous microvascular dilation in individuals with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 292(1):E314–E318. doi:10.1152/ajpendo.00365.2006

    Article  CAS  PubMed  Google Scholar 

  45. Stefanovska A, Bracic M, Kvernmo HD (1999) Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Bio-Med Eng 46(10):1230–1239

    Article  CAS  Google Scholar 

  46. Tooke JE (1996) Peripheral microvascular disease in diabetes. Diabetes Res Clin Pract 30(Suppl):61–65

    Article  PubMed  Google Scholar 

  47. Tsukada K, Hase K, Minamitani H, Sekizuka E, Oshio C (2001) Simultaneous measurement of blood flow distribution and oxygen tension by photoexcitation in organ microcirculation. Trans Inst Electr Eng Jpn Part C 121-C(9):1415–1421

    Google Scholar 

  48. Veves A, Akbari CM, Primavera J, Donaghue VM, Zacharoulis D, Chrzan JS, DeGirolami U, LoGerfo FW, Freeman R (1998) Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 47(3):457–463

    Article  CAS  PubMed  Google Scholar 

  49. Vinik AI, Erbas T, Park TS, Stansberry KB, Scanelli JA, Pittenger GL (2001) Dermal neurovascular dysfunction in type 2 diabetes. Diabetes Care 24(8):1468–1475

    Article  CAS  PubMed  Google Scholar 

  50. Ward JD, Boulton AJ, Simms JM, Sandler DA, Knight G (1983) Venous distension in the diabetic neuropathic foot (physical sign of arteriovenous shunting). J R Soc Med 76(12):1011–1014

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA (1996) Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 27(3):567–574

    Article  CAS  PubMed  Google Scholar 

  52. Yazdanfar S, Rollins AM, Izatt JA (2000) In vivo imaging of blood flow dynamics using color Doppler optical coherence tomography. In: Coherence domain optical methods in biomedical science and clinical applications IV, 24–26 Jan 2000, USA. Proceedings of the SPIE—International Society Optics Engineering (USA). SPIE Int Soc Opt Eng, pp 106–111. doi:10.1117/12.384146

  53. Zioupos P, Barbenel JC, Lowe GDO, MacRury S (1993) Foot microcirculation and blood rheology in diabetes. J Biomed Eng 15(2):155–158. doi:10.1016/0141-5425(93)90048-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial help from the Indian Institute of Technology Madras for carrying out the study. All the volunteers from the Institute hospital who participated in this study are also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujatha Narayanan Unni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, C., Unni, S.N. Correlation analysis of laser Doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus. Med Biol Eng Comput 53, 557–566 (2015). https://doi.org/10.1007/s11517-015-1266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1266-y

Keywords

Navigation