Skip to main content

Advertisement

Log in

Generation of three-dimensional prototype models based on cone beam computed tomography

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education.

Methods

Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models.

Results

Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated.

Conclusions

Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brix F, Lambrecht JTh (1987) Individuelle Schädelmodellherstellung auf der Grundlage computertomographischer Informationen. In: Schwenzer N, Pfeifer G (eds) Bildgebendes Untersuchungsverfahren in der Mund-, Kiefer- und Gesichts-Chirurgie, Band XXXII. Thieme Verlag Stuttgart, New York, pp 74–77

    Google Scholar 

  2. Marsh JL, Vannier MW (1993) The “third” dimension in craniofacial surgery. Plast Reconstr Surg 71: 759–767

    Google Scholar 

  3. Lambrecht JT, Brix F (1990) Individual skull model fabrication for craniofacial surgery. Cleft Palate J 27: 382–385

    Article  PubMed  CAS  Google Scholar 

  4. Lambrecht JTh, Hammer B, Jacob AL, Schiel H, Hunziker M, Kreusch T, Kliegis U (1995) Individual model fabrication in maxillofacial radiology. Dentomaxillofac Radiol 24: 147–157

    PubMed  CAS  Google Scholar 

  5. Petzold R, Zeilhofer HF, Kalender WA (1999) Rapid prototyping technology in medicine-basics and applications. Comput Med Imaging Graph 23: 277–284

    Article  PubMed  CAS  Google Scholar 

  6. Toyofuku F, Konishi K, Kanda S (1986) Representation of arbitrarily curved sections of dentomaxillofacial region by the X-ray video CT. Oral Radiol 2: 9–13

    Google Scholar 

  7. Bianchi SD, Lojacono A (1998) 2D and 3D images generated by cone beam computed tomography (CBCT) for dentomaxillofacial investigations. In: Lembke HU, Vannier M, Inamuson K, Forman A (eds) CARS computer assited radiology and surgery. Elsevier, Amsterdam, pp 792–797

    Google Scholar 

  8. Honda K, Hashimoto K, Arai Y (1998) Clinical experience with ortho-CT for giagnosis of the temporomandibular joint disorders. Dentomaxillofac Radiol 27(Suppl 1): 39

    Google Scholar 

  9. Iwai K, Arai Y, Nishizawa K, Tammisalo E, Hashimoto K, Shinoda K (1998) Estimation of radiation doses from ortho cubic super high resolution CT. Dentomaxillofac Radiol 27(Suppl 1): 39

    Google Scholar 

  10. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K (1999) Developement of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 28: 245–248

    Article  PubMed  CAS  Google Scholar 

  11. Lee SJ, Jung IY, Lee CY, Choi SY, Kum KY (2001) Clinical application of computer-aided rapid prototyping for tooth transplantation. Dental Traumatol 17: 114–119

    Article  CAS  Google Scholar 

  12. Choi JY, Choi JH, Kim NK, Kim Y, Lee JK, Kim MK, Lee JH, Kim MJ (2002) Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg 31: 23–32

    Article  PubMed  CAS  Google Scholar 

  13. Lambrecht JTh (1995) 3D-modeling technology in oral and maxillofacial surgery. Hauser, München

    Google Scholar 

  14. Vannier MW, Hildebolt CF, Conover G, Knapp RH, Crothers NY, Wang G (1997) Three-dimensional dental imaging by spiral CT. Oral Surg Oral Med Oral Pathol 84: 561–570

    CAS  Google Scholar 

  15. Lemkamp M, Filippi A, Berndt D, Lambrecht JTh (2006) Diagnostische Möglichkeiten der digitalen Volumentomographie. Schweiz Monatsschr Zahnmed 116: 645–653

    PubMed  Google Scholar 

  16. Scarfe W, Farman A, Surkovic P (2006) Clinical application of cone-beam computed tomography in dental practice. J Can Dent Assoc 72: 75–80

    PubMed  Google Scholar 

  17. Arai Y, Honda K, Iwai K, Shinoda K (2001) Practical model “3DX” of limited cone-beam X-ray CT for dental use. Int Congr Ser 1230: 713–718

    Article  Google Scholar 

  18. Mozzo P, Procaci C, Tacconi A, Tinazzi Martini P, Gergamo Andreis I (1998) A new volumetric CT machine for dental imaging based in cone-beam technique: preliminiary results. Eur Radiol 8: 1558–1564

    Article  PubMed  CAS  Google Scholar 

  19. Naitoh M, Kubota Y, Katsumata A, Ohsaki C, Ariji E (2006) Dimensional accuracy of a binder jet model produced from computerized tomography data for dental implants. J Oral Implantol 32: 273–276

    Article  PubMed  Google Scholar 

  20. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG (2008) Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 78: 387–395

    Article  PubMed  Google Scholar 

  21. Veyre-Goulet S, Fortin T, Thierry A (2008) Accuracy of linear measurement provided by cone beam computed tomography to assess bone quantitiy in the posterior maxilla: a human caldaver study. Clin Implant Dent Relat Res (Epub ahead of print, accessed April 1 2008)

  22. Loubele M, Van Assche N, Carpentier K, Maes F, Jacobs R, van Steenberghe D, Suetens P (2008) Comparative localized linear accuracy of small-field cone-beam CT and multislice CT for alveolar bone measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105: 512–518

    Article  PubMed  CAS  Google Scholar 

  23. Schulze D, Heiland M, Blake F, Rother U, Schmelzle R (2005) Evaluation of quality reformatted images from two cone-beam computed tomographic systems. J Craniomaxillofac Surg 33: 19–23

    PubMed  Google Scholar 

  24. Mah P, McDavid WD (2008) Conversion of CBCT gray levels to HOUNSFIELD units. Oral Surg Oral Med Oral Pathol. In: Selected abstracts from the 58th annual scientific session of the American academy of oral and maxillofacial radiology, Chicago, November 28–December 2, 2007; online accessed April 2008

  25. Markl M, Schumacher R, Kuffer J, Bley TA, Henning J (2005) Rapid vessel prototyping: vascular modlin using 3t magnsetic resonance angiography and rapid prototyping technology. MAGMA 18: 288–292

    Article  PubMed  Google Scholar 

  26. Friedland B, Donoff B, Dodson TB (2008) The use of 3-dimensional reconstructions to evaluate the anatomic relationship of the mandibular canal and impacted mandibular third molars. J Oral Maxillofac Surg 66: 1678–1685

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Th. Lambrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrecht, J.T., Berndt, D.C., Schumacher, R. et al. Generation of three-dimensional prototype models based on cone beam computed tomography. Int J CARS 4, 175–180 (2009). https://doi.org/10.1007/s11548-008-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0275-9

Keywords

Navigation