Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 1/2015

01.01.2015 | Original Article

A 3D active model framework for segmentation of proximal femur in MR images

verfasst von: Sadaf Arezoomand, Won-Sook Lee, Kawan S. Rakhra, Paul E. Beaulé

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Segmentation of osseous structures from clinical MR images is difficult due to acquisition artifacts and variable signal intensity of bones. Segmentation of femoral head is required for evaluation of hip joint abnormalities such as cam- type femoroacetabular impingement. A parametric deformable model (PDM) framework was developed for segmentation of 3D magnetic resonance (MR) images of the hip.

Method

A two-phase segmentation scheme was implemented: (i) Radial basis function interpolation was performed for semi-automatic piecewise registration of a proximal femur atlas model to an MRI scan region of interest. User-defined control points on the mesh model were registered to the corresponding landmarks on the image. (ii) An active PDM was then used for coarse-to-fine level segmentation. The segmentation technique was tested using 3D synthetic image data and clinical MR scans of the hip with varying resolution.

Results

The segmentation method provided a mean target overlap of 0.95 and misclassification error of 0.035 for the synthetic data. The average target overlap was 0.88, and misclassification error rate was 0.12 for the clinical MRI data sets.

Conclusion

A framework for segmentation of proximal femur in hip MRI scans was developed and tested. This method is robust to artifacts and intensity inhomogeneity and resistant to leakage into adjacent tissues. In comparison with slicewise segmentation techniques, this method features inter-slice consistency, which results in a smooth model of the proximal femur in hip MRI scans.
Literatur
1.
Zurück zum Zitat Rubin D (2013) Femoroacetabular impingement: fact, fiction, or fantasy? Am J Roentgenol 201(3):526–534CrossRef Rubin D (2013) Femoroacetabular impingement: fact, fiction, or fantasy? Am J Roentgenol 201(3):526–534CrossRef
2.
Zurück zum Zitat Dimmick S, Stevens K, Brazier D, Anderson S (2013) Femoroacetabular impingement. Radiol Clinics N Am 51(3):337–352CrossRef Dimmick S, Stevens K, Brazier D, Anderson S (2013) Femoroacetabular impingement. Radiol Clinics N Am 51(3):337–352CrossRef
3.
Zurück zum Zitat Sankar W, Matheney T, Zaltz I (2013) Femoroacetabular impingement: current concepts and controversies. Orthop Clinics N Am 44(4):575–589CrossRef Sankar W, Matheney T, Zaltz I (2013) Femoroacetabular impingement: current concepts and controversies. Orthop Clinics N Am 44(4):575–589CrossRef
4.
Zurück zum Zitat Genovese E, Spiga S, Vinci V, Aliprandi A, Di Pietto F, Coppolino F, Scialpi M, Giganti M (2013) Femoroacetabular impingement: role of imaging. Musculoskelet Surg 97:117–126CrossRef Genovese E, Spiga S, Vinci V, Aliprandi A, Di Pietto F, Coppolino F, Scialpi M, Giganti M (2013) Femoroacetabular impingement: role of imaging. Musculoskelet Surg 97:117–126CrossRef
5.
Zurück zum Zitat Rakhra K (2012) ”MRI/CT in FAI”. In: Femoroacetabular impingement. Springer, Berlin, pp 41–55 Rakhra K (2012) ”MRI/CT in FAI”. In: Femoroacetabular impingement. Springer, Berlin, pp 41–55
6.
Zurück zum Zitat Pham D, Xu C, Prince J (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337PubMedCrossRef Pham D, Xu C, Prince J (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337PubMedCrossRef
7.
Zurück zum Zitat Ababneh S, Prescott J, Gurcan M (2011) Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Med Image Anal 15(4):438–448PubMedCentralPubMedCrossRef Ababneh S, Prescott J, Gurcan M (2011) Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Med Image Anal 15(4):438–448PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Hata Y, Kobashi S (2009) Fuzzy segmentation of endorrhachis in magnetic resonance images and its fuzzy maximum intensity projection. Appl Soft Comput 9(3):1156–1169CrossRef Hata Y, Kobashi S (2009) Fuzzy segmentation of endorrhachis in magnetic resonance images and its fuzzy maximum intensity projection. Appl Soft Comput 9(3):1156–1169CrossRef
9.
Zurück zum Zitat Lorigo L, Faugeras O, Grimson W, Keriven R, Kikinis R (1998) Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. Int Conf Med Image Comput Comput Assist Interv 1496:1195–1204 Lorigo L, Faugeras O, Grimson W, Keriven R, Kikinis R (1998) Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. Int Conf Med Image Comput Comput Assist Interv 1496:1195–1204
10.
Zurück zum Zitat Fripp J, Bourgeat P, Crozier S, Ourselin S (2007) Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information. Acad Radiol 14(10):1201–1208PubMedCrossRef Fripp J, Bourgeat P, Crozier S, Ourselin S (2007) Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information. Acad Radiol 14(10):1201–1208PubMedCrossRef
11.
Zurück zum Zitat Schmid J, Magnenat-Thalmann N (2008) MRI bone segmentation using deformable models and shape priors. Int Conf Med Image Comput Comput Assist Interv 11(1):119–126 Schmid J, Magnenat-Thalmann N (2008) MRI bone segmentation using deformable models and shape priors. Int Conf Med Image Comput Comput Assist Interv 11(1):119–126
12.
Zurück zum Zitat Seim H, Kainmueller D, Lamecker H, Bindernagel M, Malinowski J, Zachow S (2010) Model-based auto-segmentation of knee bones and cartilage in MRI data. In: MICCAI workshop medical image analysis for the clinic Seim H, Kainmueller D, Lamecker H, Bindernagel M, Malinowski J, Zachow S (2010) Model-based auto-segmentation of knee bones and cartilage in MRI data. In: MICCAI workshop medical image analysis for the clinic
13.
Zurück zum Zitat Carballido-Gamio J, Belongie S, Majumdar S (2004) Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans Med Imaging 23(1):36–44PubMedCrossRef Carballido-Gamio J, Belongie S, Majumdar S (2004) Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans Med Imaging 23(1):36–44PubMedCrossRef
14.
Zurück zum Zitat Frangia A, Egmont-Petersenb M, Niessena W, Reiberb J, Viergever M (2001) Bone tumor segmentation from MR perfusion images with neural networks using multi-scale pharmacokinetic features. Image Vis Comput 19(9–10):679–690CrossRef Frangia A, Egmont-Petersenb M, Niessena W, Reiberb J, Viergever M (2001) Bone tumor segmentation from MR perfusion images with neural networks using multi-scale pharmacokinetic features. Image Vis Comput 19(9–10):679–690CrossRef
15.
Zurück zum Zitat Radeva P, Serrat J, Marti E (1995) A snake for model-based segmentation. In: International conference on computer vision Radeva P, Serrat J, Marti E (1995) A snake for model-based segmentation. In: International conference on computer vision
16.
Zurück zum Zitat Pardoa J, Cabelloa D, Herasb J (1997) A snake for model-based segmentation of biomedical images. Pattern Recognit Lett 18(14):1529–1538CrossRef Pardoa J, Cabelloa D, Herasb J (1997) A snake for model-based segmentation of biomedical images. Pattern Recognit Lett 18(14):1529–1538CrossRef
17.
Zurück zum Zitat Chesnaud C, Refregier P, Boulet V (1999) Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans Pattern Anal Mach Intell 21(11):1145–1157CrossRef Chesnaud C, Refregier P, Boulet V (1999) Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans Pattern Anal Mach Intell 21(11):1145–1157CrossRef
18.
Zurück zum Zitat Ji L, Yan H (2002) Robust topology-adaptive snakes for image segmentation. Image Vis Comput 20(2):147–164CrossRef Ji L, Yan H (2002) Robust topology-adaptive snakes for image segmentation. Image Vis Comput 20(2):147–164CrossRef
19.
Zurück zum Zitat Colliot O, Camara O, Bloch I (2006) Integration of fuzzy spatial relations in deformable models-application to brain MRI segmentation. Pattern Recognit 39(8):1401–1414CrossRef Colliot O, Camara O, Bloch I (2006) Integration of fuzzy spatial relations in deformable models-application to brain MRI segmentation. Pattern Recognit 39(8):1401–1414CrossRef
20.
Zurück zum Zitat Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRef Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRef
21.
Zurück zum Zitat Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In: Annual conference on computer graphics and interactive techniques Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In: Annual conference on computer graphics and interactive techniques
22.
Zurück zum Zitat Delingette H, Hebert M, Ikeuchi K (1991) ”Image segmentation and shape representation using deformable surfaces. In: IEEE computer society conference on computer vision and pattern recognition Delingette H, Hebert M, Ikeuchi K (1991) ”Image segmentation and shape representation using deformable surfaces. In: IEEE computer society conference on computer vision and pattern recognition
23.
Zurück zum Zitat Cohen I, Ayache N, Cohen L (1991) Segmenting, visualizing and characterizing 3D anatomical structures with deformable surfaces. In: International conference of the IEEE engineering in medicine and biology society Cohen I, Ayache N, Cohen L (1991) Segmenting, visualizing and characterizing 3D anatomical structures with deformable surfaces. In: International conference of the IEEE engineering in medicine and biology society
24.
Zurück zum Zitat Cohen L, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147 Cohen L, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147
25.
Zurück zum Zitat McInerney T, Terzopoulos D (1995) Medical image segmentation using topologically adaptable surfaces. In: International conference on computer vision, virtual reality and robotics in medicine McInerney T, Terzopoulos D (1995) Medical image segmentation using topologically adaptable surfaces. In: International conference on computer vision, virtual reality and robotics in medicine
26.
Zurück zum Zitat McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840–850PubMedCrossRef McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840–850PubMedCrossRef
27.
Zurück zum Zitat Alfiansyah A, Ng K, Lamsudin R (2009) ”Deformable model for serial ultrasound images segmentation: application to computer assisted hip arthroplasty. In: International conference on biomedical engineering (IFMBE) Alfiansyah A, Ng K, Lamsudin R (2009) ”Deformable model for serial ultrasound images segmentation: application to computer assisted hip arthroplasty. In: International conference on biomedical engineering (IFMBE)
28.
Zurück zum Zitat Cohen L (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218CrossRef Cohen L (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218CrossRef
29.
Zurück zum Zitat Bakos M, Karch P, Dulova O (2012) Advanced initialization possibilities of active contours. In: IEEE international symposium on applied machine intelligence and informatics (SAMI) Bakos M, Karch P, Dulova O (2012) Advanced initialization possibilities of active contours. In: IEEE international symposium on applied machine intelligence and informatics (SAMI)
30.
Zurück zum Zitat Rahnamayan S, Tizhoosh H, Salama M (2005) Automated snake initialization for the segmentation of the prostate in ultrasound images. Image Anal Recognit 3656:930–937 Rahnamayan S, Tizhoosh H, Salama M (2005) Automated snake initialization for the segmentation of the prostate in ultrasound images. Image Anal Recognit 3656:930–937
31.
Zurück zum Zitat Dalvi R, Abugharibeh R, Wilson D, Wilson D (2006) Highly-automated 3D segmentation of femoral bone from hip MRI. In: International society for magnetic resonance in medicine scientific meeting (ISMRM), Berlin Dalvi R, Abugharibeh R, Wilson D, Wilson D (2006) Highly-automated 3D segmentation of femoral bone from hip MRI. In: International society for magnetic resonance in medicine scientific meeting (ISMRM), Berlin
32.
Zurück zum Zitat Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L0 gradient minimization. ACM Trans Graph (TOG) 30(6):174 Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L0 gradient minimization. ACM Trans Graph (TOG) 30(6):174
33.
Zurück zum Zitat Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vis 32(2):111–146CrossRef Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vis 32(2):111–146CrossRef
34.
Zurück zum Zitat Tohka J (2002) Surface extraction from volumetric images using deformable meshes: a comparative study. In: European conference on computer vision (ECCV) Tohka J (2002) Surface extraction from volumetric images using deformable meshes: a comparative study. In: European conference on computer vision (ECCV)
35.
36.
Zurück zum Zitat Nötzli H, Wyss T, Stoecklin C, Schmid M, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg 84(4):556–560CrossRef Nötzli H, Wyss T, Stoecklin C, Schmid M, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg 84(4):556–560CrossRef
37.
Zurück zum Zitat Torsney-Weir T, Saad A, Moller T, Hege H, Weber B, Verbavatz J, Bergner S (2011) Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans Vis Comput Graph 17(12):1892–1901PubMedCrossRef Torsney-Weir T, Saad A, Moller T, Hege H, Weber B, Verbavatz J, Bergner S (2011) Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans Vis Comput Graph 17(12):1892–1901PubMedCrossRef
Metadaten
Titel
A 3D active model framework for segmentation of proximal femur in MR images
verfasst von
Sadaf Arezoomand
Won-Sook Lee
Kawan S. Rakhra
Paul E. Beaulé
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 1/2015
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-014-1125-6

Weitere Artikel der Ausgabe 1/2015

International Journal of Computer Assisted Radiology and Surgery 1/2015 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.