Skip to main content
Log in

Summary

This study examined the effect of CD24 on anoikis of ovarian cancer cells. The expression of CD24 was detected by RT-PCR and Western blotting in ovarian cancer cells with high metastatic potential (HO-8910PM cells) and low metastatic potential (A2780 cells). Cell viability and cell proliferation were detected by MTT assay in suspension culture and adhesion culture. Soft agar culture was used to observe the colony formation. Anoikis was flow cytometrically detected. The results showed that the expression levels of CD24 mRNA and protein were significantly higher in HO-8910PM cells than in A2780 cells (P<0.01). In the suspension culture and soft agar culture, the HO-8910PM cells formed larger and more colonies (35.33±5.51 vs. 16.67±4.04; P<0.01), and showed a stronger resistance to anoikis than A2780 cells did (cell apoptosis rate: 5.93%±2.38% vs. 16.32%±2.00%; P<0.01). After treated with CD24 monoclonal antibodies, the number of colony formed in HO-8910PM and A2780 cells was significantly decreased (9.33±2.52 and 8.00±2.00, respectively), and the anoikis rate of the two cell lines was also markedly increased (23.11%±2.87% and 28.36%±2.29%, respectively). Our study suggested that CD24 may play an important role in the development of anoikis resistance and CD24 can be used as a new therapeutic target to induce anoikis and inhibit metastasis in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin, 2013,63(1):11–30

    Article  PubMed  Google Scholar 

  2. Cho KR, Shih IM. Ovarian cancer. Annu Rev Pathol, 2009,4:287–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hunn J, Rodriguez GC. Ovarian cancer: etiology, risk factors, and epidemiology. Clin Obstet Gynecol, 2012,55(1):3–23

    Article  PubMed  Google Scholar 

  4. Jayson GC, Kohn EC, Kitchener HC, et al. Ovarian cancer. Lancet, 2014,384(9951):1376–1388

    Article  PubMed  Google Scholar 

  5. Kigawa J. New strategy for overcoming resistance to chemotherapy of ovarian cancer. Yonago Acta Med, 2013,56(2):43–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol, 1994,124(4):619–626

    Article  CAS  PubMed  Google Scholar 

  7. Tan K, Goldstein D, Crowe P, et al. Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis. J Cancer Res Clin Oncol, 2013,139(11):1795–1805

    Article  CAS  PubMed  Google Scholar 

  8. Taddei ML, Giannoni E, Fiaschi T, et al. Anoikis: an emerging hallmark in health and diseases. J Pathol, 2012,226(2):380–393

    Article  CAS  PubMed  Google Scholar 

  9. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta, 2013,1833(12):3481–3498

    Article  CAS  PubMed  Google Scholar 

  10. Maamer-Azzabi A, Ndozangue-Touriguine O, Bréard J. Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737. Cell Death Dis, 2013,4:e801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Schackmann RC, Klarenbeek S, Vlug EJ, et al. Loss of p120-catenin induces metastatic progression of breast cancer by inducing anoikis resistance and augmenting growth factor receptor signaling. Cancer Res, 2013,73(15):4937–4949

    Article  CAS  PubMed  Google Scholar 

  12. Cheng KW, Lahad JP, Kuo WL, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med, 2004,10(11):1251–1256

    Article  CAS  PubMed  Google Scholar 

  13. Sood AK, Armaiz-Pena GN, Halder J, et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest, 2010,120(5):1515–1523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. He X, Ota T, Liu P, et al. Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res, 2010,70(8):3109–3118

    Article  CAS  PubMed  Google Scholar 

  15. Kristiansen G, Sammar M, Altevogt P. Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol, 2004,35(3):255–262

    Article  CAS  PubMed  Google Scholar 

  16. Kristiansen G, Denkert C, Schlüns K, et al. CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol, 2002,161(4):1215–1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kristiansen G, Winzer KJ, Mayordomo E, et al. CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res, 2003,9(13):4906–4913

    CAS  PubMed  Google Scholar 

  18. Kang KS, Choi YP, Gao MQ, et al. CD24+ ovary cancer cells exhibit an invasive mesenchymal phenotype. Biochem Biophys Res Commun, 2013,432(2):333–338

    Article  CAS  PubMed  Google Scholar 

  19. Hodeib M, Eskander RN, Bristow RE. New paradigms in the surgical and adjuvant treatment of ovarian cancer. Minerva Ginecol, 2014,66(2):179–192

    CAS  PubMed  Google Scholar 

  20. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol, 2010,177(3):1053–1064

    Article  PubMed Central  PubMed  Google Scholar 

  21. Aguirre-Ghiso JA, Bragado P, Sosa MS. Metastasis awakening: targeting dormant cancer. Nat Med, 2013,19(3):276–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal, 2012,24(2):393–401

    Article  CAS  PubMed  Google Scholar 

  23. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer, 2006,6(6):449–458

    Article  CAS  PubMed  Google Scholar 

  24. Kristiansen G, Pilarsky C, Pervan J, et al. CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate, 2004,58(2):183–192

    Article  PubMed  Google Scholar 

  25. Karimi-Busheri F, Rasouli-Nia A, Zadorozhny V, et al. CD24+/CD38- as new prognostic marker for non-small cell lung cancer. Multidiscip Respir Med, 2013,8(1):65

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chou YY, Jeng YM, Lee TT, et al. Cytoplasmic CD24 expression is a novel prognostic factor in diffuse-type gastric adenocarcinoma. Ann Surg Oncol, 2007,14(10):2748–2758

    Article  PubMed  Google Scholar 

  27. Choi YL, Kim SH, Shin YK, et al. Cytoplasmic CD24 expression in advanced ovarian serous borderline tumors. Gynecol Oncol, 2005,97(2):379–386

    Article  CAS  PubMed  Google Scholar 

  28. Moulla A, Miliaras D, Sioga A, et al. The immunohistochemical expression of CD24 and CD171 adhesion molecules in borderline ovarian tumors. Pol J Pathol, 2013,64(3):180–184

    Article  PubMed  Google Scholar 

  29. Aigner S, Ruppert M, Hubbe M, et al. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin. Int Immunol, 1995,7(10):1557–1565

    Article  CAS  PubMed  Google Scholar 

  30. Aigner S, Sthoeger ZM, Fogel M, et al. CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood, 1997,89(9):3385–3395.

    CAS  PubMed  Google Scholar 

  31. Aigner S, Ramos CL, Hafezi-Moghadam A, et al. CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J, 1998,12(12):1241–1251

    CAS  PubMed  Google Scholar 

  32. Baumann P, Cremers N, Kroese F, et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res, 2005,65(23):10783–10793

    Article  CAS  PubMed  Google Scholar 

  33. Shield K, Ackland ML, Ahmed N, et al. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol, 2009,113(1):143–148

    Article  PubMed  Google Scholar 

  34. Sodek KL, Ringuette MJ, Brown TJ. Compact spheroid formation by ovarian cancer cells is a ssociated with contractile behavior and an invasive phenotype. Int J Cancer, 2009,124(9):2060–2070

    Article  CAS  PubMed  Google Scholar 

  35. Friederichs J, Zeller Y, Hafezi-Moghadam A, et al. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res, 2000,60(23):6714–6722

    CAS  PubMed  Google Scholar 

  36. Smith SC, Oxford G, Wu Z, et al. The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res, 2006,66(4):1917–1922

    Article  CAS  PubMed  Google Scholar 

  37. Smith SC, Theodorescu D. The Ral GTPase pathway in metastatic bladder cancer: key mediator and therapeutic target. Urol Oncol, 2009,27(1):42–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lee KM1, Ju JH, Jang K, et al. CD24 regulates cell proliferation and transforming growth factor β-induced epithelial to mesenchymal transition through modulation of integrin β1 stability. Cell Signal, 2012,24(11):2132–2142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-bo Wang  (汪宏波).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yh., Sun, X. & Wang, Hb. Role of CD24 in anoikis resistance of ovarian cancer cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 35, 390–396 (2015). https://doi.org/10.1007/s11596-015-1443-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-015-1443-0

Key words

Navigation