Skip to main content
Log in

LPS-induced effects on angiotensin I-converting enzyme expression and shedding in human pulmonary microvascular endothelial cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Angiotensin I-converting enzyme (kininase II, ACE, and CD143) availability is a determinant of local angiotensin and kinin concentrations and their physiological actions. Until now, it is unclear whether the decrease of pulmonary ACE activity in sepsis—described in clinical studies—is due to an enzyme compensatory downregulation (reduced ACE–mRNA expression) to shedding of ACE or endothelial damage. To address these questions, ACE distribution under septic conditions was studied in vitro by treating pulmonary microvascular endothelial cells (HPMEC) and human umbilical vein endothelial cells (HUVEC) with lipopolysaccharide from Escherichia coli (LPS). Primary isolated HUVEC and HPMEC were compared by detecting ACE activity, membrane-bound ACE, as well as shedding and mRNA production of ACE with and without LPS (1 ng/ml–1 μg/ml). ACE mRNA expression was detected by real-time PCR, and shedded ACE was measured in cell culture supernatant by ELISA. Additionally, membrane-bound protein expression was investigated by immunohistochemistry in situ. In septic ARDS, the distribution of ACE protein was significantly reduced in all lung endothelial cells (p < 0.001). After stimulation with LPS, cultivated HPMEC showed more markedly than HUVEC, a concentration-dependent reduction of ACE protein expression compared to the respective untreated controls. Real-time PCR demonstrated a reduced ACE mRNA expression after LPS stimulation, predominantly in HPMEC. Specifically, in HPMEC, a concentration-dependent increase of shedded ACE was shown 24 h after LPS treatment. HPMEC cultures are an apt model for the investigation of pulmonary ACE expression in sepsis. This study suggests that reduced pulmonary microvascular endothelial ACE expression in septic ARDS is caused by two processes: (initial) increased shedding of ACE accompanied by a compensatory downregulation of ACE–mRNA and membrane-bound protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Aird W. C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100: 174–90; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Annane D.; Bellissant E.; Cavaillon J. M. Septic shock. Lancet 365: 63–78; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Atochina E. N.; Hiemisch H. H.; Muzykantov V. R.; Danilov S. M. Systemic administration of platelet-activating factor in rat reduces specific pulmonary uptake of circulating monoclonal antibody to angiotensin-converting enzyme. Lung 170: 349–58; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Atochina E. N.; Muzykantov V. R.; Al-Mehdi A. B.; Danilov S. M.; Fisher A. B. Normoxic Lung Ischemia/Reperfusion Accelerates Shedding of Angiotensin Converting Enzyme from the Pulmonary Endothelium. Am. J. Respir. Crit. Care Med. 156: 1114–1119; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Balyasnikova I. V.; Danilov S. M.; Muzykantov V. R.; Fisher A. B. Modulation of angiotensin-converting enzyme in cultured human vascular endothelial cells. In Vitro Cell. Dev. Biol. Anim. 34: 545–54; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cookson W. O.; Wiseman M. S.; Shale D. J. Angiotensin converting enzyme and endotoxin induced lung damage in the mouse. Thorax 40: 774–7; 1985.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cziraki A.; Horvath I. G.; Papp L. Endothelial function studies in pulmonary vascular disease: determination of angiotensin converting enzyme activity in humans (review). Int. J. Mol. Med. 9: 317–25; 2002.

    PubMed  CAS  Google Scholar 

  • Danilov S.; Atochina E.; Hiemisch H.; Churak-ova T.; Moldobayeva A.; Sakharov I. et al. Interaction of mAb to angiotensin-converting enzyme (ACE) with antigen in vitro and in vivo: antibody targeting to the lung induces ACE antigenic modulation. Int. Immunol. 6: 1153–60; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers M. R.; Gordon K.; Schwager S. L.; Sturrock E. D. Shedding the load of hypertension: the proteolytic processing of angiotensin-converting enzyme. S. Afr. Med. J. 102: 461–4; 2012.

    PubMed  CAS  Google Scholar 

  • English W. R.; Corvol P.; Murphy G. LPS activates ADAM9 dependent shedding of ACE from endothelial cells. Biochem. Biophys. Res. Commun. 421: 70–5; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Fourrier F.; Chopin C.; Wallaert B.; Mazurier C.; Mangalaboyi J.; Durocher A. Compared evolution of plasma fibronectin and angiotensin-converting enzyme levels in septic ARDS. Chest 87: 191–5; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Friedland J.; Silverstein E. A sensitive fluorimetric assay for serum angiotensin-converting enzyme. Am. J. Clin. Pathol. 66: 416–24; 1976.

    PubMed  CAS  Google Scholar 

  • Gorin A. B.; Hasagawa G.; Hollinger M.; Sperry J.; Zuckerman J. Release of angiotensin converting enzyme by the lung after Pseudomonas bacteremia in sheep. J. Clin. Invest. 68: 163–70; 1981.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hagiwara S.; Iwasaka H.; Matumoto S.; Hidaka S.; Noguchi T. Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit. Care Med. 37: 626–33; 2009.

    Article  PubMed  CAS  Google Scholar 

  • He X.; Han B.; Mura M.; Xia S.; Wang S.; Ma T. et al. Angiotensin-converting enzyme inhibitor captopril prevents oleic acid-induced severe acute lung injury in rats. Shock 28: 106–11; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hollinger M. A. Effect of endotoxin on mouse serum angiotensin-converting enzyme. Am. Rev. Respir. Dis. 127: 756–7; 1983.

    PubMed  CAS  Google Scholar 

  • Hooper N. M.; Karran E. H.; Turner A. J. Membrane protein secretases. Biochem. J. 321(Pt 2): 265–79; 1997.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jaffe E. A.; Nachman R. L.; Becker C. G.; Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52: 2745–56; 1973.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jerng J. S.; Hsu Y. C.; Wu H. D.; Pan H. Z.; Wang H. C.; Shun C. T. et al. Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model. Thorax 62: 527–35; 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson A. R.; Coalson J. J.; Ashton J.; Larumbide M.; Erdos E. G. Neutral endopeptidase in serum samples from patients with adult respiratory distress syndrome. Comparison with angiotensin-converting enzyme. Am. Rev. Respir. Dis. 132: 1262–7; 1985.

    PubMed  CAS  Google Scholar 

  • Kelley J. Lavage angiotensin-converting enzyme as a marker of lung injury. Am. Rev. Respir. Dis. 137: 531–4; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Levy M. M.; Fink M. P.; Marshall J. C.; Abraham E.; Angus D.; Cook D. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 31: 1250–6; 2003.

    Article  PubMed  Google Scholar 

  • Marshall R. P.; Webb S.; Bellingan G. J.; Montgomery H. E.; Chaudhari B.; McAnulty R. J. et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 166: 646–50; 2002.

    Article  PubMed  Google Scholar 

  • Metzger R.; Franke F. E.; Bohle R. M.; Alhenc-Gelas F.; Danilov S. M. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: vessel, organ and species specificity. Microvasc. Res. 81: 206–15; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Muller A. M.; Gruhn K.; Lange S.; Franke F. E.; Muller K. M. Angiotensin converting enzyme (ACE, CD143) in the regular pulmonary vasculature. Pathologe 25: 141–6; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Muzykantov V. R.; Puchnina E. A.; Atochina E. N.; Hiemish H.; Slinkin M. A.; Meertsuk F. E. et al. Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme. J. Nucl. Med. 32: 453–60; 1991.

    PubMed  CAS  Google Scholar 

  • Nukiwa T.; Matsuoka R.; Takagi H.; Ishii Y.; Arai T.; Kira S. Responses of serum and lung angiotensin-converting enzyme activities in the early phase of pulmonary damage induced by oleic acid in dogs. Am. Rev. Respir. Dis. 126: 1080–6; 1982.

    PubMed  CAS  Google Scholar 

  • Orfanos S. E.; Armaganidis A.; Glynos C.; Psevdi E.; Kaltsas P.; Sarafidou P. et al. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation 102: 2011–8; 2000.

    Google Scholar 

  • Orfanos S. E.; Chen X. L.; Ryan J. W.; Chung A. Y.; Burch S. E.; Catravas J. D. Assay of pulmonary microvascular endothelial angiotensin-converting enzyme in vivo: comparison of three probes. Toxicol. Appl. Pharmacol. 124: 99–111; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Orfanos S. E.; Ehrhart I. C.; Barman S.; Hofman W. F.; Catravas J. D. Endothelial ectoenzyme assays estimate perfused capillary surface area in the dog lung. Microvasc. Res. 54: 145–55; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Orfanos S. E.; Langleben D.; Khoury J.; Schlesinger R. D.; Dragatakis L.; Roussos C. et al. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation 99: 1593–9; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Remmele W.; Schicketanz K. H. Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol. Res. Pract. 189: 862–6; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Rubenfeld G. D.; Caldwell E.; Peabody E.; Weaver J.; Martin D. P.; Neff M. et al. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353: 1685–93; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Siefkin A. D.; Parsons G. H.; Patwell S. W.; Hollinger M. A. The value of serial serum angiotensin converting enzyme determinations in hospitalized patients with lung disease. Am. J. Med. Sci. 288: 200–7; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M. Ultrastructural organization of the alveolar-capillary unit. Ciba. Found. Symp. 78: 11–36; 1980.

    PubMed  CAS  Google Scholar 

  • Villard E.; Alonso A.; Agrapart M.; Challah M.; Soubrier F. Induction of angiotensin I-converting enzyme transcription by a protein kinase C-dependent mechanism in human endothelial cells. J. Biol. Chem. 273: 25191–7; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Votta-Velis E. G.; Minshall R. D.; Visintine D. J.; Castellon M.; Balyasnikova I. V. Propofol Attenuates Endotoxin-Induced Endothelial Cell Injury, Angiotensin-Converting Enzyme Shedding, and Lung Edema. Anesth. Analg. 105: 1363–1370; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wagner M.; Hermanns I.; Bittinger F.; Kirkpatrick C. J. Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am. J. Physiol. 277: L1026–33; 1999.

    PubMed  CAS  Google Scholar 

  • Ware L. B.; Matthay M. A. The acute respiratory distress syndrome. N. Engl. J. Med. 342: 1334–49; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K.; Jaffe E. A. Comparison of the potency of various serotypes of E. coli lipopolysaccharides in stimulating PGI2 production and suppressing ACE activity in cultured human umbilical vein endothelial cells. Prostaglandins Leukot Essent Fatty Acids 49: 955–8; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K.; Lam G.; Keresztes R. S.; Jaffe E. A. Lipopolysaccharides decrease angiotensin converting enzyme activity expressed by cultured human endothelial cells. J. Cell. Physiol. 150: 433–9; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wosten-van Asperen R. M.; Lutter R.; Specht P. A.; van Woensel J. B.; van der Loos C. M.; Florquin S. et al. Ventilator-induced inflammatory response in lipopolysaccharide-exposed rat lung is mediated by angiotensin-converting enzyme. Am. J. Pathol. 176: 2219–27; 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. M. Moisch and Mrs. A. Sartoris for their excellent assistance with the cell culture and the real-time PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Hermanns.

Additional information

Editor: T. Okamoto

M.I. Hermanns and A.M. Müller contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 55 kb)

High resolution image (TIFF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermanns, M.I., Müller, A.M., Tsokos, M. et al. LPS-induced effects on angiotensin I-converting enzyme expression and shedding in human pulmonary microvascular endothelial cells. In Vitro Cell.Dev.Biol.-Animal 50, 287–295 (2014). https://doi.org/10.1007/s11626-013-9707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9707-0

Keywords

Navigation