Skip to main content
Log in

Supporting performance in the face of age-related neural changes: testing mechanistic roles of cognitive reserve

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Age impacts multiple neural measures and these changes do not always directly translate into alterations in clinical and cognitive measures. This partial protection from the deleterious effects of age in some individuals is referred to as cognitive reserve (CR) and although linked to variations in intelligence and life experiences, its mechanism is still unclear. Within the framework of a theoretical model we tested two potential mechanistic roles of CR to maintain task performance, neural reserve and neural compensation, in young and older adults using functional and structural MRI. Neural reserve refers to increased efficiency and/or capacity of existing functional neural resources. Neural compensation refers to the increased ability to recruit new, additional functional resources. Using structural and functional measures and task performance, the roles of CR were tested using path analysis. Results supported both mechanistic theories of CR and the use of our general theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317–332. doi:10.1007/bf02294359.

    Article  Google Scholar 

  • Arbuckle, J. L. (2007). AMOS 16.0. Chicago: SPSS.

    Google Scholar 

  • American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington, DC: American Psychiatric Press.

    Google Scholar 

  • Browne, M. W., & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24(4), 445.

    Article  Google Scholar 

  • Busatto, G. F., Garrido, G. E. J., Almeida, O. P., Castro, C. C., Camargo, C. H. P., Cid, C. G., et al. (2003). A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer’s disease. Neurobiology of Aging, 24(2), 221–231.

    Article  PubMed  Google Scholar 

  • Erickson, K. I., Boot, W. R., Basak, C., Neider, M. B., Prakash, R. S., Voss, M. W., et al. (2010). Striatal volume predicts level of video game skill acquisition. Cerebral Cortex, 20(11), 2522–2530. doi:10.1093/cercor/bhp293.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Holmes, A. P., Price, C. J., Buchel, C., & Worsley, K. J. (1999). Multisubject fMRI studies and conjunction analyses. Neuroimage, 10(4), 385–396.

    Google Scholar 

  • Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., & Buckner, R. L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 64(6), 1032–1039.

    Article  PubMed  CAS  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14(1 Pt 1), 21–36.

    Article  PubMed  CAS  Google Scholar 

  • Hu, L. T., & Bentler, P. M. (1998). Fit Indices in covariance structure modeling: sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453.

    Article  Google Scholar 

  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.

    Article  Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128.

    Article  PubMed  Google Scholar 

  • Nelson, H. E., & O’Connell, A. (1978). Dementia: the estimation of premorbid intelligence levels using the new adult reading test. Cortex, 14(2), 234–244.

    PubMed  CAS  Google Scholar 

  • Roe, C. M., Mintun, M. A., D’Angelo, G., Xiong, C., Grant, E. A., & Morris, J. C. (2008). Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled pittsburgh compound B uptake. Archives of Neurology, 65(11), 1467–1471. doi:10.1001/archneur.65.11.1467.

    Article  PubMed  Google Scholar 

  • Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6558–6563.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K. (2003). Reactivation of memory: role of medial temporal lobe and prefrontal cortex. Reviews in the Neurosciences, 14(3), 241–252.

    Article  PubMed  Google Scholar 

  • Sakai, K., Rowe, J. B., & Passingham, R. E. (2002). Parahippocampal reactivation signal at retrieval after interruption of rehearsal. The Journal of Neuroscience, 22(15), 6315–6320. doi:20026694.

    PubMed  CAS  Google Scholar 

  • Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., et al. (2009). Span, CRUNCH, and beyond: working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22(4), 655–669. doi:10.1162/jocn.2009.21230.

    Article  Google Scholar 

  • Siedlecki, K. L., Stern, Y., Reuben, A., Sacco, R. L., Elkind, M. S. V., & Wright, C. B. (2009). Construct validity of cognitive reserve in a multiethnic cohort: The Northern Manhattan Study. Journal of the International Neuropsychological Society, 15(04), 558–569. doi:10.1017/S1355617709090857.

    Article  PubMed  Google Scholar 

  • Steffener, J., Brickman, A., Rakitin, B., Gazes, Y., & Stern, Y. (2009). The impact of age-related changes on working memory functional activity. Brain Imaging and Behavior, 3(2), 142–153.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.

    Article  PubMed  Google Scholar 

  • Stern, Y., Sano, M., Paulson, J., & Mayeux, R. (1987). Modified mini-mental state examination: validity and reliability. Neurology.

  • Stern, Y., Alexander, G. E., Prohovnik, I., Stricks, L., Link, B., Lennon, M. C., et al. (1995). Relationship between lifetime occupation and parietal flow: Implications for a reserve against Alzheimer's disease pathology. Neurology, 45(1), 55–60.

    PubMed  CAS  Google Scholar 

  • Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, H. J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402.

    Article  PubMed  Google Scholar 

  • Stern, Y., Zarahn, E., Habeck, C., Holtzer, R., Rakitin, B. C., Kumar, A., et al. (2008). A common neural network for cognitive reserve in verbal and object working memory in young but not old. Cerebral Cortex, 18(4), 959–967.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(736), 652–654.

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela, M., & Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. The American Journal of Geriatric Psychiatry, 17(3), 179–187.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1987). Wechsler Memory Scale—Revised. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Wilson, R. S., Mendes De Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L., Evans, D. A., et al. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. Journal of the American Medical Association, 287(6), 742–748.

    Article  PubMed  Google Scholar 

  • Worsley, K. J., Poline, J. B., Friston, K. J., & Evans, A. C. (1997). Characterizing the response of PET and fMRI data using multivariate linear models. Neuroimage, 6(4), 305–319.

    Article  PubMed  CAS  Google Scholar 

  • Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging, 28(5), 784–798.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institute of Aging grant 5R01AG026158-5 awarded to Y.S. and National Institute of Aging grant 1K01AG035061 awarded to J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Steffener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steffener, J., Reuben, A., Rakitin, B.C. et al. Supporting performance in the face of age-related neural changes: testing mechanistic roles of cognitive reserve. Brain Imaging and Behavior 5, 212–221 (2011). https://doi.org/10.1007/s11682-011-9125-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-011-9125-4

Keywords

Navigation