Skip to main content
Log in

BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarts, E., van Holstein, M., & Cools, R. (2011). Striatal dopamine and the interface between motivation and cognition. Frontiers in Psychology, 2, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abler, B., Walter, H., Erk, S., Kammerer, H., & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. NeuroImage, 31(2), 790–795.

    Article  PubMed  Google Scholar 

  • Ávila, C. (2001). Distinguishing BIS-mediated and BAS-mediated disinhibition mechanisms: a comparison of disinhibition models of gray (1981, 1987) and of Patterson and Newman (1993). Journal of Personality and Social Psychology, 80(2), 311–324.

    Article  PubMed  Google Scholar 

  • Ávila, C., & Torrubia, R. (2008). Performance and conditioning studies. In P. Corr (Ed.), Reinforcement sensitivity theory of personality (pp. 228–260). Cambridge University Press.

  • Ávila, C., Garbin, G., Sanjuán, A., Forn, C., Barrós-Loscertales, A., Bustamante, J. C., et al. (2012). Frontostriatal response to set switching is moderated by reward sensitivity. Social Cognitive and Affective Neuroscience, 7(4), 423–430.

    Article  PubMed  Google Scholar 

  • Ávila, C., Moltó, J., & Segarra, P. (1995). Sensitivity to conditioned or unconditioned stimuli: what is the mechanism underlying passive avoidance deficits in extraverts? Journal of Research in Personality, 29(4), 373–394.

    Article  Google Scholar 

  • Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(31), 8161–8165.

    CAS  Google Scholar 

  • Balleine, B. W., Liljeholm, M., & Ostlund, S. B. (2009). The integrative function of the basal ganglia in instrumental conditioning. Behavioural Brain Research, 199(1), 43–52.

    Article  PubMed  Google Scholar 

  • Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(19), 5160–5166.

    Article  CAS  Google Scholar 

  • Becker, J. B. (2009). Sexual differentiation of motivation: a novel mechanism? Hormones and Behavior, 55(5), 646–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkman, E. T., Lieberman, M. D., & Gable, S. L. (2009). BIS, BAS, and response conflict: testing predictions of the revised reinforcement sensitivity theory. Personality and Individual Differences, 46(5–6), 586–591.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bijttebier, P., Beck, I., Claes, L., & Vandereycken, W. (2009). Gray’s reinforcement sensitivity theory as a framework for research on personality-psychopathology associations. Clinical Psychology Review, 29(5), 421–430.

    Article  PubMed  Google Scholar 

  • Boddy, J., Carver, A., & Rowley, K. (1986). Effects of positive and negative verbal reinforcement on performance as a function of extraversion-introversion: some tests of gray’s theory. Personality and Individual Differences, 7(1), 81–88.

    Article  Google Scholar 

  • Boileau, I., Payer, D., Chugani, B., Lobo, D., Behzadi, A., Rusjan, P. M., et al. (2013a). The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction, 108(5), 953–963.

    Article  PubMed  Google Scholar 

  • Boileau, I., Payer, D., Chugani, B., Lobo, D. S. S., Houle, S., Wilson, A. A., et al. (2013b). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Molecular Psychiatry, 19, 1–9.

    Google Scholar 

  • Bustamante, J.-C., Barrós-Loscertales, A., Costumero, V., Fuentes-Claramonte, P., Rosell-Negre, P., Ventura-Campos, N., et al. (2014). Abstinence duration modulates striatal functioning during monetary reward processing in cocaine patients. Addiction Biology, 19(5), 885–894.

    Article  PubMed  Google Scholar 

  • Cai, C., Yuan, K., Yin, J., Feng, D., Bi, Y., Li, Y., et al. (in press). Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging and Behavior.

  • Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26(3), 321–352.

    Article  PubMed  Google Scholar 

  • Carter, R. M., Macinnes, J. J., Huettel, S. A., & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3(August), 21.

    PubMed  PubMed Central  Google Scholar 

  • Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. Journal of Personality and Social Psychology, 67(2), 319–333.

    Article  Google Scholar 

  • Caseras, X., Ávila, C., & Torrubia, R. (2003). The measurement of individual differences in behavioural inhibition and behavioural activation systems: a comparison of personality scales. Personality and Individual Differences, 34(6), 999–1013.

    Article  Google Scholar 

  • Costumero, V., Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., & Ávila, C. (2013a). Reward sensitivity modulates connectivity among reward brain areas during processing of anticipatory reward cues. The European Journal of Neuroscience, 38(3), 2399–2407.

    Article  PubMed  Google Scholar 

  • Costumero, V., Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., Rosell-Negre, P., & Ávila, C. (2013b). Reward sensitivity is associated with brain activity during erotic stimulus processing. PloS One, 8(6), e66940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross, C. P., Copping, L. T., & Campbell, A. (2011). Sex differences in impulsivity: a meta-analysis. Psychological Bulletin, 137(1), 97–130.

    Article  PubMed  Google Scholar 

  • Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.

    Article  PubMed  Google Scholar 

  • Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 27–38.

    Article  CAS  Google Scholar 

  • Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84(6), 3072–3077.

    CAS  PubMed  Google Scholar 

  • Diekhof, E. K., Kaps, L., Falkai, P., & Gruber, O. (2012). The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude - an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia, 50(7), 1252–1266.

    Article  PubMed  Google Scholar 

  • Dreher, J. C., Schmidt, P. J., Kohn, P., Furman, D., Rubinow, D., & Berman, K. F. (2007). Menstrual cycle phase modulates reward-related neural function in women. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2465–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst, M., Nelson, E. E., McClure, E. B., Monk, C. S., Munson, S., Eshel, N., et al. (2004). Choice selection and reward anticipation: an fMRI study. Neuropsychologia, 42(12), 1585–1597.

    Article  PubMed  Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neuroscience and Biobehavioral Reviews, 37(9), 1946–1954.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4), 189–210.

    Article  Google Scholar 

  • Gomez, R., & McLaren, S. (1997). The effects of reward and punishment on response disinhibition, moods, heart rate and skin conductance level during instrumental learning. Personality and Individual Differences, 23(2), 305–316.

    Article  Google Scholar 

  • Gray, J. A. (1987). The neuropsychology of emotion and personality. In S. M. Stahl, S. D. Iverson, & E. C. Goodman (Eds.), Cognitive neurochemistry (pp. 171–190). Oxford: Oxford University Press.

    Google Scholar 

  • Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry in to the functions of the septo-hippocampal system (2nd ed., ). Oxford: Oxford University Press.

    Google Scholar 

  • Groenewegen, H. J., Wright, C. I., Beijer, A. V. J., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. Annals of the New York Academy of Sciences, 877, 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, B. S. (1976). Extraversion and reinforcement in verbal operant conditioning. British Journal of Psychology, 67(1), 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, B. S., & Nagpal, M. (1978). Impulsivity/sociability and reinforcement in verbal operant conditioning. British Journal of Psychology, 69(2), 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S. (1990). Impulsivity/sociability and reinforcement in verbal operant conditioning: a replication. Personality and Individual Differences, 11(6), 585–589.

    Article  Google Scholar 

  • Gupta, S., & Shukla, A. P. (1989). Verbal operant conditioning as a function of extraversion and reinforcement. British Journal of Psychology, 80(1), 39–44.

    Article  Google Scholar 

  • Haber, S. N., & McFarland, N. R. (1999). The concept of the ventral striatum in nonhuman primates. Annals of the New York Academy of Sciences, 877, 33–48.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, T., Dresler, T., Ehlis, A.-C., Plichta, M. M., Heinzel, S., Polak, T., & Fallgatter, A. J. (2009). Neural response to reward anticipation is modulated by gray’s impulsivity. NeuroImage, 46(4), 1148–1153.

    Article  PubMed  Google Scholar 

  • Hanlon, C. A., Wesley, M. J., & Porrino, L. J. (2009). Loss of functional specificity in the dorsal striatum of chronic cocaine users. Drug and Alcohol Dependence, 102(1–3), 88–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, G., Leung, B. K., & Balleine, B. W. (2014). Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiology of Learning and Memory, 108, 104–118.

    Article  PubMed  Google Scholar 

  • Hayes, D. J., Duncan, N. W., Xu, J., & Northoff, G. (2014). A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neuroscience and Biobehavioral Reviews, 45, 350–368.

    Article  PubMed  Google Scholar 

  • He, Z., Cassaday, H. J., Bonardi, C., & Bibby, P. A. (2013). Do personality traits predict individual differences in excitatory and inhibitory learning? Frontiers in Psychology, 4(MAY), 1–12.

    Google Scholar 

  • Hikosaka, O., Bromberg-Martin, E., Hong, S., & Matsumoto, M. (2008). New insights on the subcortical representation of reward. Current Opinion in Neurobiology, 18(2), 203–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt, C. J., Assaf, M., Muska, C. E., Rosen, R. I., Thomas, A. D., Johnson, M. R., et al. (2012). Reward-related dorsal striatal activity differences between former and current cocaine dependent individuals during an interactive competitive game. PloS One, 7(5), e34917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research Reviews, 56(1), 27–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective. Trends in Neurosciences, 30(5), 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Kantorowitz, D. A. (1978). Personality and conditioning of tumescence and detumescence. Behaviour Research and Therapy, 16(2), 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Kennis, M., Rademaker, A. R., & Geuze, E. (2013). Neural correlates of personality: an integrative review. Neuroscience and Biobehavioral Reviews, 37(1), 73–95.

    Article  PubMed  Google Scholar 

  • Kirsch, P., Schienle, A., Stark, R., Sammer, G., Blecker, C., Walter, B., & Vaitl, D. (2003). Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. NeuroImage, 20(2), 1086–1095.

    Article  PubMed  Google Scholar 

  • Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21(16), RC159.

    CAS  Google Scholar 

  • Knutson, B., Delgado, M. R., & Phillips, P. E. M. (2008). Representation of subjective value in the striatum. In P. W. Glimcher, C. F. Camerer, E. Fehr, & R. A. Poldrack (Eds.), Neuroeconomics: Decision Making and the Brain (pp. 389–406). Elsevier.

  • Knutson, B., & Greer, S. M. (2008). Anticipatory affect: neural correlates and consequences for choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1511), 3771–3786.

    Article  Google Scholar 

  • Knyazev, G. G., Slobodskaya, H. R., & Wilson, G. D. (2004). Comparison of the construct validity of the gray-Wilson personality questionnaire and the BIS/BAS scales. Personality and Individual Differences, 37(8), 1565–1582.

    Article  Google Scholar 

  • Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–268.

    Article  CAS  PubMed  Google Scholar 

  • Kross, E., Egner, T., Ochsner, K., Hirsch, J., & Downey, G. (2007). Neural dynamics of rejection sensitivity. Journal of Cognitive Neuroscience, 19(6), 945–956.

    Article  PubMed  Google Scholar 

  • Li, Y., Qiao, L., Sun, J., Wei, D., Li, W., Qiu, J., et al. (2014). Gender-specific neuroanatomical basis of behavioral inhibition/approach systems (BIS/BAS) in a large sample of young adults: a voxel-based morphometric investigation. Behavioural Brain Research, 274, 400–408.

    Article  PubMed  Google Scholar 

  • Liljeholm, M., & O’Doherty, J. P. (2012). Contributions of the striatum to learning, motivation, and performance: an associative account. Trends in Cognitive Sciences, 16(9), 467–475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, F., Zhou, Y., Du, Y., Zhao, Z., Qin, L., Xu, J., & Lei, H. (2015). Aberrant corticostriatal functional circuits in adolescents with internet addiction disorder. Frontiers in Human Neuroscience, 9, 356.

    PubMed  PubMed Central  Google Scholar 

  • Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219–1236.

    Article  PubMed  Google Scholar 

  • McClure, S. M., York, M. K., & Montague, P. R. (2004). The neural substrates of reward processing in humans: the modern role of FMRI. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 10(3), 260–268.

    Article  Google Scholar 

  • McCord, R. R., & Wakefield, J. A. (1981). Arithmetic achievement as a function of introversion-extraversion and teacher-presented reward and punishment. Personality and Individual Differences, 2(2), 145–152.

    Article  Google Scholar 

  • Nagpal, M., & Gupta, B. S. (1979). Personality, reinforcement and verbal operant conditioning. British Journal of Psychology, 70, 471–476.

    Article  Google Scholar 

  • Newman, J. P., Widom, C. S., & Nathan, S. (1985). Passive avoidance in syndromes of disinhibition: psychopathy and extraversion. Journal of Personality and Social Psychology, 48(5), 1316–1327.

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452–454.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

  • Paisey, T. J. H., & Mangan, G. L. (1988). Personality and conditioning with appetitive and aversive stimuli. Personality and Individual Differences, 9(1), 69–78.

    Article  Google Scholar 

  • Pallanti, S., Haznedar, M. M., Hollander, E., Licalzi, E. M., Bernardi, S., Newmark, R., & Buchsbaum, M. S. (2010). Basal ganglia activity in pathological gambling: a fluorodeoxyglucose-positron emission tomography study. Neuropsychobiology, 62(2), 132–138.

    Article  PubMed  Google Scholar 

  • Patterson, C. M., Kosson, D. S., & Newman, J. P. (1987). Reaction to punishment, reflectivity, and passive avoidance learning in extraverts. Journal of Personality and Social Psychology, 52(3), 565–575.

    Article  CAS  PubMed  Google Scholar 

  • Pickering, A. D., & Gray, J. A. (2001). Dopamine, appetitive reinforcement, and the neuropsychology of human learning : an individual differences approach. In A. Eliasz, & A. Angleitner (Eds.), Advances in research on temperament (pp. 113–149). Lengerich, Germany: PABST Science Publishers.

    Google Scholar 

  • Ruge, H., & Wolfensteller, U. (2014). Distinct fronto-striatal couplings reveal the double-faced nature of response–outcome relations in instruction-based learning. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 349–364.

    Article  Google Scholar 

  • Sescousse, G., Caldú, X., Segura, B., & Dreher, J.-C. C. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681–696.

    Article  PubMed  Google Scholar 

  • Seunath, O. M. (1975). Personality, reinforcement and learning. Perceptual and Motor Skills, 41(2), 459–463.

    Article  CAS  PubMed  Google Scholar 

  • Simon, J. J., Walther, S., Fiebach, C. J., Friederich, H.-C. C., Stippich, C., Weisbrod, M., & Kaiser, S. (2010). Neural reward processing is modulated by approach- and avoidance-related personality traits. NeuroImage, 49(2), 1868–1874.

    Article  PubMed  Google Scholar 

  • Smillie, L. D., Dalgleish, L. I., & Jackson, C. J. (2007). Distinguishing between learning and motivation in behavioral tests of the reinforcement sensitivity theory of personality. Personality and Social Psychology Bulletin, 33(4), 476–489.

    Article  PubMed  Google Scholar 

  • Smillie, L. D., Jackson, C., & Dalgleish, L. (2006). Conceptual distinctions among carver and white’s (1994) BAS scales: a reward-reactivity versus trait impulsivity perspective. Personality and Individual Differences, 40(5), 1039–1050.

    Article  Google Scholar 

  • Tricomi, E., Balleine, B. W., & O’Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. The European Journal of Neuroscience, 29(11), 2225–2232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41(2), 281–292.

    Article  CAS  PubMed  Google Scholar 

  • Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., et al. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44(3), 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Logan, J., Childress, A.-R., et al. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(24), 6583–6588.

    CAS  Google Scholar 

  • Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4(3), 274–290.

    Article  PubMed  Google Scholar 

  • Zald, D. H., Boileau, I., El-Dearedy, W., Gunn, R., McGlone, F., Dichter, G. S., & Dagher, A. (2004). Dopamine transmission in the human striatum during monetary reward tasks. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(17), 4105–4112.

    Article  CAS  Google Scholar 

  • Zelenski, J. M., & Larsen, R. J. (1999). Susceptibility to affect: a comparison of three personality taxonomies. Journal of Personality, 67(5), 761–791.

    Article  CAS  PubMed  Google Scholar 

  • Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Costumero.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional Review Board of the Universitat Jaume I and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

The project was supported by grants PSI2010-20,168 from Ministerio de Economía y Competitividad, P1•1B2011-09 from the Universitat Jaume I to CA, and grants 040/2011 from Spanish National Drug Strategy Ministerio de Sanidad y Consumo, and PSI2012-33,054 from Ministerio de Economía y Competitividad to ABL.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costumero, V., Barrós-Loscertales, A., Fuentes, P. et al. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations. Brain Imaging and Behavior 10, 869–879 (2016). https://doi.org/10.1007/s11682-015-9466-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9466-5

Keywords

Navigation