Skip to main content

Advertisement

Log in

“Small World” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from EEG data

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Brain imaging plays an important role in the study of Alzheimer’s disease (AD), where atrophy has been found to occur in the hippocampal formation during the very early disease stages and to progress in parallel with the disease’s evolution. The aim of the present study was to evaluate a possible correlation between “Small World” characteristics of the brain connectivity architecture—as extracted from EEG recordings—and hippocampal volume in AD patients. A dataset of 144 subjects, including 110 AD (MMSE 21.3) and 34 healthy Nold (MMSE 29.8) individuals, was evaluated. Weighted and undirected networks were built by the eLORETA solutions of the cortical sources’ activities moving from EEG recordings. The evaluation of the hippocampal volume was carried out on a subgroup of 60 AD patients who received a high-resolution T1-weighted sequence and underwent processing for surface-based cortex reconstruction and volumetric segmentation using the Freesurfer image analysis software. Results showed that, quantitatively, more correlation was observed in the right hemisphere, but the same trend was seen in both hemispheres. Alpha band connectivity was negatively correlated, while slow (delta) and fast-frequency (beta, gamma) bands positively correlated with hippocampal volume. Namely, the larger the hippocampal volume, the lower the alpha and the higher the delta, beta, and gamma Small World characteristics of connectivity. Accordingly, the Small World connectivity pattern could represent a functional counterpart of structural hippocampal atrophying and related-network disconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2007) The hippocampus book. Oxford University Press: Oxford.

  • Aoki, Y., Ishii, R., Pascual-Marqui, R. D., Canuet, L., Ikeda, S., Hata, M., et al. (2015). Detection of EEG-resting state independent networks by eLORETA-ICA method. Frontiers in Human Neuroscience, 9, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y. Y., Toga, A. W., et al. (2012). Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alzheimer Disease and Associated Disorders, 26, 17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Babiloni, C., Vecchio, F., Mirabella, G., Buttiglione, M., Sebastiano, F., Picardi, A., et al. (2009). Hippocampal, amygdala, and neocortical synchronization of theta rhythms is related to an immediate recall during rey auditory verbal learning test. Human Brain Mapping, 30, 2077–2089.

    Article  PubMed  Google Scholar 

  • Barnes, J., Boyes, R. G., Lewis, E. B., Schott, J. M., Frost, C., Scahill, R. I., et al. (2007). Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral. Neurobiology of Aging, 28, 1657–1663.

    Article  CAS  PubMed  Google Scholar 

  • Barry, R. J., De Blasio, F. M., & Borchard, J. P. (2014). Sequential processing in the equiprobable auditory Go/NoGo task: children vs. adults. Clinical Neurophysiology, 125, 1995–2006.

    Article  PubMed  Google Scholar 

  • Bassett, D. S. & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12, 512–523.

    Article  PubMed  Google Scholar 

  • Blinowska, K. J. & Kaminski, M. (2013). Functional brain networks: random, “small world” or deterministic? PloS One, 8, e78763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobinski, M., de Leon, M. J., Wegiel, J., Desanti, S., Convit, A., Saint Louis, L. A., et al. (2000). The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience, 95, 721–725.

    Article  CAS  PubMed  Google Scholar 

  • Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews. Neuroscience, 3, 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki, G. & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.

    Article  CAS  PubMed  Google Scholar 

  • Canuet, L., Ishii, R., Pascual-Marqui, R. D., Iwase, M., Kurimoto, R., Aoki, Y., et al. (2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PloS One, 6, e27863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlesimo, G. A., Caltagirone, C., & Gainotti, G. (1996). The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. European Neurology, 36, 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, M. J., Lacritz, L. H., Cicerello, A. R., Chapman, S. B., Honig, L. S., Weiner, M. F., et al. (2004). Three-word recall in normal aging. Journal of Clinical and Experimental Neuropsychology, 26, 1128–1133.

    Article  PubMed  Google Scholar 

  • D’Amelio, M. & Rossini, P. M. (2012). Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: from animal models to human findings. Progress in Neurobiology, 99, 42–60.

    Article  PubMed  Google Scholar 

  • Delacourte, A., David, J. P., Sergeant, N., Buee, L., Wattez, A., Vermersch, P., et al. (1999). The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology, 52, 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  • deToledo-Morrell, L., Stoub, T. R., Bulgakova, M., Wilson, R. S., Bennett, D. A., Leurgans, S., et al. (2004). MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiology of Aging, 25, 1197–1203.

    Article  PubMed  Google Scholar 

  • Dierks, T., Jelic, V., Pascual-Marqui, R. D., Wahlund, L., Julin, P., Linden, D. E., et al. (2000). Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clinical Neurophysiology, 111, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  • Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu, Y. Y., Jagust, W. J., et al. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 441–447.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Cummings, J. L., DeKosky, S. T., Barberger-Gateau, P., et al. (2010). Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurology, 9, 1118–1127.

    Article  PubMed  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurology, 13, 614–629.

    Article  PubMed  Google Scholar 

  • Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., Stevens, J. M., et al. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain, 119(Pt 6), 2001–2007.

    Article  PubMed  Google Scholar 

  • Fox, N. C., Crum, W. R., Scahill, R. I., Stevens, J. M., Janssen, J. C., & Rossor, M. N. (2001). Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet, 358, 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.

    Article  Google Scholar 

  • Fuchs, M., Kastner, J., Wagner, M., Hawes, S., & Ebersole, J. S. (2002). A standardized boundary element method volume conductor model. Clinical Neurophysiology, 113, 702–712.

    Article  PubMed  Google Scholar 

  • Gosche, K. M., Mortimer, J. A., Smith, C. D., Markesbery, W. R., & Snowdon, D. A. (2002). Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology, 58, 1476–1482.

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt, R. E., Ossadtchi, A., & Pflieger, M. E. (2005). Local Linear Estimators for the Bioelectromagnetic Inverse Problem. IEEE Transactions on Signal Processing, 53, 3403–3412.

    Article  Google Scholar 

  • Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140, 566–572.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, S., Mizuno-Matsumoto, Y., Canuet, L., Ishii, R., Aoki, Y., Hata, M., et al. (2015). Emotion regulation of neuroticism: emotional information processing related to psychosomatic state evaluated by electroencephalography and exact low-resolution brain electromagnetic tomography. Neuropsychobiology, 71, 34–41.

    Article  PubMed  Google Scholar 

  • Iriarte, J., Urrestarazu, E., Valencia, M., Alegre, M., Malanda, A., Viteri, C., et al. (2003). Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. Journal of Clinical Neurophysiology, 20, 249–257.

    Article  PubMed  Google Scholar 

  • Jack Jr., C. R., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., et al. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 1397–1403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack Jr., C. R., Dickson, D. W., Parisi, J. E., Xu, Y. C., Cha, R. H., O’Brien, P. C., et al. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology, 58, 750–757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jovicich, J., Minati, L., Marizzoni, M., Marchitelli, R., Sala-Llonch, R., Bartres-Faz, D., et al. (2015). Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study. NeuroImage, 124, 442–454.

    Article  PubMed  Google Scholar 

  • Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., et al. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163–178.

    Article  CAS  PubMed  Google Scholar 

  • Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage, 34, 1600–1611.

    Article  PubMed  Google Scholar 

  • Kaminski, M., Blinowska, K., & Szclenberger, W. (1997). Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Electroencephalography and Clinical Neurophysiology, 102, 216–227.

    Article  CAS  PubMed  Google Scholar 

  • Killiany, R. J., Hyman, B. T., Gomez-Isla, T., Moss, M. B., Kikinis, R., Jolesz, F., et al. (2002). MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology, 58, 1188–1196.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, F. (2000). Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neuroscience Research, 38, 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24, 61–100.

    Article  CAS  PubMed  Google Scholar 

  • Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26, 319–340.

    Article  CAS  PubMed  Google Scholar 

  • Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced alpha band power changes in the human EEG and attention. Neuroscience Letters, 244, 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10, 120–131.

    Article  CAS  PubMed  Google Scholar 

  • Lawton, M. P. & Brody, E. M. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 9, 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Marizzoni, M., Antelmi, L., Bosch, B., Bartres-Faz, D., Muller, B. W., Wiltfang, J., et al. (2015). Longitudinal reproducibility of automatically segmented hippocampal subfields: a multisite European 3 T study on healthy elderly. Human Brain Mapping, 36, 3516–3527.

    Article  PubMed  Google Scholar 

  • Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1412), 1293–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr., C. R., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 7, 263–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miraglia, F., Vecchio, F., Bramanti, P., & Rossini, P. (2015a). EEG characteristics in “eyes open” vs “eyes closed” conditions: small world network architecture in healthy aging and age-related brain degeneration. Clinical Neurophysiology, 127, 1261–1268.

    Article  PubMed  Google Scholar 

  • Miraglia, F., Vecchio, F., Bramanti, P., & Rossini, P. (2015b). Small-worldness characteristics and its gender relation in specific hemispheric networks. Neuroscience, 310, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Mobascher, A., Brinkmeyer, J., Warbrick, T., Musso, F., Wittsack, H. J., Stoermer, R., et al. (2009). Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli–a fMRI/EEG study. NeuroImage, 44(3), 1081–1092.

    Article  CAS  PubMed  Google Scholar 

  • Modrego, P. J. (2006). Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Current Alzheimer Research, 3, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Monaco, M., Costa, A., Caltagirone, C., & Carlesimo, G. A. (2013). Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurological Sciences, 34, 749–754.

    Article  PubMed  Google Scholar 

  • Mulert, C., Jager, L., Schmitt, R., Bussfeld, P., Pogarell, O., Moller, H. J., et al. (2004). Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. NeuroImage, 22, 83–94.

    Article  PubMed  Google Scholar 

  • Olbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., et al. (2009). EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage, 45, 319–332.

    Article  PubMed  Google Scholar 

  • Onnela, J. P., Saramaki, J., Kertesz, J., & Kaski, K. (2005). Intensity and coherence of motifs in weighted complex networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 71, 065103.

    Article  PubMed  Google Scholar 

  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24 Suppl D, 5–12.

    PubMed  Google Scholar 

  • Pascual-Marqui RD. (2007) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. arXiv preprint arXiv:0711 1455.

  • Pascual-Marqui RD. (2009) Theory of the EEG Inverse Problem. In: 2009 Artech House B, editor. Quantitative EEG Analysis: Methods and Clinical Applications., pp. 121–140.

  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65.

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen, A., Laakso, M., Kalviainen, R., Partanen, K., Vainio, P., Lehtovirta, M., et al. (1996). Severity of hippocampal atrophy correlates with the prolongation of MRI T2 relaxation time in temporal lobe epilepsy but not in Alzheimer’s disease. Neurology, 46, 1724–1730.

    Article  CAS  PubMed  Google Scholar 

  • Pizzagalli, D. A., Pascual-Marqui, R. D., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, H. C., et al. (2001). Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. The American Journal of Psychiatry, 158, 405–415.

    Article  CAS  PubMed  Google Scholar 

  • Pizzagalli, D. A., Oakes, T. R., Fox, A. S., Chung, M. K., Larson, C. L., Abercrombie, H. C., et al. (2004). Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Molecular Psychiatry, 9(325), 393–405.

    Article  Google Scholar 

  • Pohlack, S. T., Meyer, P., Cacciaglia, R., Liebscher, C., Ridder, S., & Flor, H. (2014). Bigger is better! Hippocampal volume and declarative memory performance in healthy young men. Brain Structure & Function, 219, 255–267.

    Article  Google Scholar 

  • Ramyead, A., Kometer, M., Studerus, E., Koranyi, S., Ittig, S., Gschwandtner, U., et al. (2014). Aberrant current source-density and lagged phase synchronization of neural oscillations as markers for emerging psychosis. Schizophrenia Bulletin, 41, 919–929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rey, A. (1968). Reattivo Della Figura Complessa. Manuale. Organizzazioni Speciali, Firenze.

  • Ricceri, L., Minghetti, L., Moles, A., Popoli, P., Confaloni, A., De, S. R., et al. (2004). Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats. Experimental Neurology, 189, 162–172.

    Article  CAS  PubMed  Google Scholar 

  • Rienstra, C. M. (2013). Amyloid structures from Alzheimer’s disease patients. Structure, 21, 1722–1723.

    Article  CAS  PubMed  Google Scholar 

  • Roman, G. C., Tatemichi, T. K., Erkinjuntti, T., Cummings, J. L., Masdeu, J. C., Garcia, J. H., et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN international workshop. Neurology, 43, 250–260.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, W. G., Terry, R. D., Fuld, P. A., Katzman, R., & Peck, A. (1980). Pathological verification of ischemic score in differentiation of dementias. Annals of Neurology, 7, 486–488.

    Article  CAS  PubMed  Google Scholar 

  • Rossini, P. M., Desiato, M. T., Lavaroni, F., & Caramia, M. D. (1991). Brain excitability and electroencephalographic activation: non-invasive evaluation in healthy humans via transcranial magnetic stimulation. Brain Research, 567, 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Rullmann, M., Anwander, A., Dannhauer, M., Warfield, S. K., Duffy, F. H., & Wolters, C. H. (2009). EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage, 44, 399–410.

    Article  CAS  PubMed  Google Scholar 

  • Scheltens, P., Fox, N., Barkhof, F., & De, C. C. (2002). Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurology, 1, 13–21.

    Article  PubMed  Google Scholar 

  • Scoville, W. B. & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekihara, K., Sahani, M., & Nagarajan, S. S. (2005). Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage, 25, 1056–1067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B., & Mesulam, M. M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain, 121(Pt 12), 2249–2257.

    Article  PubMed  Google Scholar 

  • Shi, F., Liu, B., Zhou, Y., Yu, C., & Jiang, T. (2009). Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus, 19, 1055–1064.

    Article  PubMed  Google Scholar 

  • Sporns, O. & Honey, C. J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences of the United States of America, 103, 19219–19220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17, 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Stam, C. J., de Haan, W., Daffertshofer, A., BF, J., Manshanden, I., van Walsum AM, v. C., et al. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain, 132, 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M. & Llinas, R. R. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews, 68, 649–742.

    CAS  PubMed  Google Scholar 

  • Tanaka, Y., Hanyu, H., Sakurai, H., Takasaki, M., & Abe, K. (2003). Atrophy of the substantia innominata on magnetic resonance imaging predicts response to donepezil treatment in Alzheimer’s disease patients. Dementia and Geriatric Cognitive Disorders, 16, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Teipel, S. J., Flatz, W. H., Heinsen, H., Bokde, A. L., Schoenberg, S. O., Stockel, S., et al. (2005). Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain, 128, 2626–2644.

    Article  PubMed  Google Scholar 

  • Van, P. C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia, 42, 1394–1413.

    Article  Google Scholar 

  • van der Flier, W. M., van Straaten, E. C., Barkhof, F., Ferro, J. M., Pantoni, L., Basile, A. M., et al. (2005). Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 1497–1500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vecchio, F., Babiloni, C., Lizio, R., Fallani, F. V., Blinowska, K., Verrienti, G., et al. (2013). Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Supplements to Clinical Neurophysiology, 62, 223–236.

    Article  PubMed  Google Scholar 

  • Vecchio, F., Miraglia, F., Bramanti, P., & Rossini, P. M. (2014a). Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data. Journal of Alzheimer’s Disease, 41, 1239–1249.

    PubMed  Google Scholar 

  • Vecchio, F., Miraglia, F., Marra, C., Quaranta, D., Vita, M. G., Bramanti, P., et al. (2014b). Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. Journal of Alzheimer’s Disease, 41, 113–127.

    PubMed  Google Scholar 

  • Vecchio, F., Miraglia, F., Valeriani, L., Scarpellini. MG., Bramanti, P., Mecarelli, O., Rossini, PM. (2014c) Cortical brain connectivity and b-type natriuretic peptide in patients with congestive heart failure. Clinical EEG and Neuroscience.

  • Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., et al. (2015a). Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. Journal of Alzheimer’s Disease, 45(3), 745–756.

    PubMed  Google Scholar 

  • Vecchio, F., Miraglia, F., Valeriani, L., Scarpellini, M. G., Bramanti, P., Mecarelli, O., et al. (2015b). Cortical brain connectivity and b-type natriuretic peptide in patients with congestive heart failure. Clinical EEG and Neuroscience, 46, 224–229.

    Article  PubMed  Google Scholar 

  • Vecchio, F., Miraglia, F., Quaranta, D., Granata, G., Romanello, R., Marra, C., Bramanti, P., Rossini, PM. (2016) Cortical connectivity and memory performance in cognitive decline: a study via graph theory from EEG data. Neuroscience, 316, 143–50.

  • Vitacco, D., Brandeis, D., Pascual-Marqui, R., & Martin, E. (2002). Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapping, 17, 4–12.

    Article  PubMed  Google Scholar 

  • Volpe, U., Mucci, A., Bucci, P., Merlotti, E., Galderisi, S., & Maj, M. (2007). The cortical generators of P3a and P3b: a LORETA study. Brain Research Bulletin, 73, 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Whitwell, J. L., Crum, W. R., Watt, H. C., & Fox, N. C. (2001). Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR. American Journal of Neuroradiology, 22, 1483–1489.

    CAS  PubMed  Google Scholar 

  • Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., et al. (2011). Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PloS One, 6, e25446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worrell, G. A., Lagerlund, T. D., Sharbrough, F. W., Brinkmann, B. H., Busacker, N. E., Cicora, K. M., et al. (2000). Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topography, 12, 273–282.

    Article  CAS  PubMed  Google Scholar 

  • Xie, T. & He, Y. (2011). Mapping the Alzheimer’s brain with connectomics. Frontiers in Psychology, 2, 77.

    Google Scholar 

  • Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., et al. (1982). Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research, 17, 37–49.

    Article  PubMed  Google Scholar 

  • Zimny, A., Szewczyk, P., Trypka, E., Wojtynska, R., Noga, L., Leszek, J., et al. (2011). Multimodal imaging in diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region. Journal of Alzheimer’s Disease, 27, 591–601.

    PubMed  Google Scholar 

  • Zumsteg, D., Wennberg, R. A., Treyer, V., Buck, A., & Wieser, H. G. (2005). H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology, 65, 1657–1660.

    Article  CAS  PubMed  Google Scholar 

  • Zumsteg, D., Friedman, A., Wieser, H. G., & Wennberg, R. A. (2006a). Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clinical Neurophysiology, 117, 2615–2626.

    Article  PubMed  Google Scholar 

  • Zumsteg, D., Lozano, A. M., & Wennberg, R. A. (2006b). Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clinical Neurophysiology, 117, 1602–1609.

    Article  PubMed  Google Scholar 

  • Zumsteg, D., Lozano, A. M., Wieser, H. G., & Wennberg, R. A. (2006c). Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clinical Neurophysiology, 117, 192–207.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Francesca Miraglia participated to this study in the framework of her Ph.D. program at the Doctoral School in Neuroscience, Department of Neuroscience, Catholic University of Rome, Italy. This work was supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and by the Italian Ministry of Instruction, University and Research MIUR (“Approccio integrato clinico e sperimentale allo studio dell’invecchiamento cerebrale e delle malattie neurodegenerative: basi molecolari, epidemiologia genetica, neuroimaging multimodale e farmacogenetica. (Merit)” and “Functional connectivity and neuroplasticity in physiological and pathological aging. Prot. 2010SH7H3F (ConnAge)” PRIN project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Vecchio.

Ethics declarations

Funding

This work was supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and by the Italian Ministry of Instruction, University and Research MIUR (“Approccio integrato clinico e sperimentale allo studio dell’invecchiamento cerebrale e delle malattie neurodegenerative: basi molecolari, epidemiologia genetica, neuroimaging multimodale e farmacogenetica. (Merit)” and “Functional connectivity and neuroplasticity in physiological and pathological aging. Prot. 2010SH7H3F (ConnAge)” PRIN project).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Highlights

‐ Functional connectivity and optimal network structure is essential for information processing in the brain.

‐ Progressive structural changes in the brain of Alzheimer Patients are associated with changes in connectivity and networks architecture.

‐ Aim of the present study was to correlate the network properties from EEG signals with hippocampal atrophy in cognitive decline patients (Alzheimer) by graph analysis tools.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchio, F., Miraglia, F., Piludu, F. et al. “Small World” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from EEG data. Brain Imaging and Behavior 11, 473–485 (2017). https://doi.org/10.1007/s11682-016-9528-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9528-3

Keywords

Navigation