Skip to main content
Log in

An approach to studying the neural correlates of reserve

  • SI: Resilience/Reserve in AD
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The goal of this paper is to review my current understanding of the concepts of cognitive reserve (CR), brain reserve and brain maintenance, and to describe our group’s approach to using imaging to study their neural basis. I present a working model for utilizing data regarding brain integrity, clinical status, cognitive activation and CR proxies to develop analyses that can explore the neural basis of cognitive reserve and brain maintenance. The basic model assumes that the effect of brain changes on cognition is mediated by task-related activation. We treat CR as a moderator to understand how task-related activation might vary as a function of CR, or how CR might operate independently of these differences in task-related activation. My hope is that this presentation will spark discussion across groups that study these concepts, allowing us to come to some common agreement on definitions, methodology and approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. The Journal of Neuroscience, 25(17), 4217–4221. doi:10.1523/JNEUROSCI.0496-05.2005.

    Article  CAS  PubMed  Google Scholar 

  • Barulli, D. J., Rakitin, B. C., Lemaire, P., & Stern, Y. (2013). The influence of cognitive reserve on strategy selection in normal aging. Journal of the International Neuropsychological Society, 19, 1–4.

    Article  Google Scholar 

  • Bennett, D. A., Wilson, R. S., Schneider, J. A., Evans, D. A., Mendes De Leon, C. F., Arnold, S. E., et al. (2003). Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology, 60(12), 1909–1915.

    Article  CAS  PubMed  Google Scholar 

  • Blumen, H. M., Gazes, Y., Habeck, C., Kumar, A., Steffener, J., Rakitin, B. C., et al. (2011). Neural networks associated with the speed-accuracy tradeoff: evidence from the response signal method. Behavioural Brain Research, 224(2), 397–402. doi:10.1016/j.bbr.2011.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85–100.

    Article  PubMed  Google Scholar 

  • Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402.

    Article  PubMed  Google Scholar 

  • Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170.

    Article  PubMed  Google Scholar 

  • Gazes, Y., Rakitin, B. C., Habeck, C., Steffener, J., & Stern, Y. (2012). Age differences of multivariate network expressions during task-switching and their associations with behavior. Neuropsychologia, 50(14), 3509–3518. doi:10.1016/j.neuropsychologia.2012.09.039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazes, Y., Habeck, C., O'Shea, D., Razlighi, Q. R., Steffener, J., & Stern, Y. (2015). Functional network mediates age-related differences in reaction time: a replication and extension study. Brain and Behavior, 5(5), e00324. doi:10.1002/brb3.324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazes, Y., Bowman, F. D., Razlighi, Q. R., O'Shea, D., Stern, Y., & Habeck, C. (2016). White matter tract covariance patterns predict age-declining cognitive abilities. NeuroImage, 125, 53–60. doi:10.1016/j.neuroimage.2015.10.016.

    Article  PubMed  Google Scholar 

  • Grady, C. L., Maisog, J. M., Horwitz, B., Ungerleider, L. G., Mentis, M. J., Salerno, J. A., et al. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. The Journal of Neuroscience, 14(3 Pt 2), 1450–1462.

    CAS  PubMed  Google Scholar 

  • Habeck, C., Hilton, H. J., Zarahn, E., Flynn, J., Moeller, J., & Stern, Y. (2003). Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory. NeuroImage, 20(3), 1723–1733.

    Article  PubMed  Google Scholar 

  • Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., et al. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Brain Research. Cognitive Brain Research, 23(2–3), 207–220.

    Article  PubMed  Google Scholar 

  • Habeck, C., Steffener, J., Gazes, Y., & Stern, Y. (2016). Cognitive reserve and brain maintenance: two orthogonal concepts. Cerebral Cortex (in press).

  • Jack Jr., C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. doi:10.1016/S1474-4422(12)70291-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, R. N., Manly, J., Glymour, M. M., Rentz, D. M., Jefferson, A. L., & Stern, Y. (2011). Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society, 17(4), 593–601. doi:10.1017/S1355617710001748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O'Neil, J. P., et al. (2012). Association of lifetime cognitive engagement and low beta-amyloid deposition. Archives of Neurology, 69(5), 623–629. doi:10.1001/archneurol.2011.2748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindenberger, U., von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age variance extraction: what's change got to do with it? Psychology and Aging, 26(1), 34–47. doi:10.1037/a0020525.

    Article  PubMed  Google Scholar 

  • Madden, D. J., Turkington, T. G., Provenzale, J. M., Denny, L. L., Hawk, T. C., Gottlob, L. R., et al. (1999). Adult age differences in the functional neuroanatomy of verbal recognition memory. Human Brain Mapping, 7(2), 115–135.

    Article  CAS  PubMed  Google Scholar 

  • Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398–4403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44. doi:10.1037/1082-989X.12.1.23.

    Article  PubMed  Google Scholar 

  • Nyberg, L., Lovden, M., Riklund, K., Lindenberger, U., & Backman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305. doi:10.1016/j.tics.2012.04.005.

    Article  PubMed  Google Scholar 

  • Reed, B. R., Mungas, D., Farias, S. T., Harvey, D., Beckett, L., Widaman, K., et al. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain, 133(Pt 8), 2196–2209. doi:10.1093/brain/awq154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuter-Lorenz, P. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6(9), 394.

    Article  PubMed  Google Scholar 

  • Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 280–292. doi:10.1016/j.jalz.2011.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffener, J., & Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochimica et Biophysica Acta, 1822(3), 467–473. doi:10.1016/j.bbadis.2011.09.012.

    Article  CAS  PubMed  Google Scholar 

  • Steffener, J., Brickman, A. M., Rakitin, B. C., Gazes, Y., & Stern, Y. (2009). The impact of age-related changes on working memory functional activity. Brain Imaging and Behavior, 3(2), 142–153. doi:10.1007/s11682-008-9056-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffener, J., Reuben, A., Rakitin, B. C., & Stern, Y. (2011). Supporting performance in the face of age-related neural changes: testing mechanistic roles of cognitive reserve. Brain Imaging and Behavior, 22(4), 655–669. doi:10.1007/s11682-011-9125-4.

    Google Scholar 

  • Steffener, J., Barulli, D., Habeck, C., O'Shea, D., Razlighi, Q., & Stern, Y. (2014a). The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition. PloS One, 9(3), e91196. doi:10.1371/journal.pone.0091196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffener, J., Barulli, D., Habeck, C., & Stern, Y. (2014b). Neuroimaging explanations of age-related differences in task performance. Frontiers in Aging Neuroscience, 6, 46. doi:10.3389/fnagi.2014.00046.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffener, J., Habeck, C., O'Shea, D., Razlighi, Q., Bherer, L., & Stern, Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of Aging, 40, 138–144. doi:10.1016/j.neurobiolaging.2016.01.014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–460.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. doi:10.1016/j.neuropsychologia.2009.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, Y., Zarahn, E., Hilton, H. J., Delapaz, R., Flynn, J., & Rakitin, B. (2003). Exploring the neural basis of cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 5, 691–701.

    Article  Google Scholar 

  • Stern, Y., Zarahn, E., Habeck, C., Holtzer, R., Rakitin, B. C., Kumar, A., et al. (2008). A common neural network for cognitive reserve in verbal and object working memory in young but not old. Cerebral Cortex, 18(4), 959–967. doi:10.1093/cercor/bhm134.

    Article  PubMed  Google Scholar 

  • Stern, Y., Rakitin, B. C., Habeck, C., Gazes, Y., Steffener, J., Kumar, A., et al. (2012). Task difficulty modulates young-old differences in network expression. Brain Research, 1435, 130–145. doi:10.1016/j.brainres.2011.11.061.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PloS One, 3(7), e2598. doi:10.1371/journal.pone.0002598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahodne, L. B., Manly, J. J., Brickman, A. M., Siedlecki, K. L., Decarli, C., & Stern, Y. (2013). Quantifying cognitive reserve in older adults by decomposing episodic memory variance: replication and extension. Journal of the International Neuropsychological Society, 19(8), 854–862. doi:10.1017/S1355617713000738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahodne, L. B., Manly, J. J., Brickman, A. M., Narkhede, A., Griffith, E. Y., Guzman, V. A., et al. (2015). Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application. Neuropsychologia, 77, 260–266. doi:10.1016/j.neuropsychologia.2015.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging, 28(5), 784–798. doi:10.1016/j.neurobiolaging.2006.03.002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institute on Aging (RO1 AG26158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov Stern.

Ethics declarations

Funding

This study was funded by National Institute on Aging (RO1 AG26158).

Conflict of interest

Dr. Stern declares that he has no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern, Y. An approach to studying the neural correlates of reserve. Brain Imaging and Behavior 11, 410–416 (2017). https://doi.org/10.1007/s11682-016-9566-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9566-x

Keywords

Navigation