Skip to main content

Advertisement

Log in

Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. ICASSO Toolbox, http://research.ics.aalto.fi/ica/icasso/

References

  • Bendfeldt, K., Klöppel, S., Nichols, T. E., Smieskova, R., Kuster, P., Traud, S., et al. (2012). Multivariate pattern classification of gray matter pathology in multiple sclerosis. Neuroimage, 60(1), 400–408.

    Article  PubMed  Google Scholar 

  • Bhuvaneswari, P., & Kumar, J. S. (2013). Support vector machine technique for EEG signals. International Journal of Computer Applications, 63(13).

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using an SPM toolbox. In 8th international conference on functional mapping of the human brain. Japan: Sendai.

    Google Scholar 

  • Briggs, F. B., Bartlett, S. E., Goldstein, B. A., Wang, J., McCauley, J. L., Zuvich, R. L., et al. (2010). Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12 566 individuals. Human Molecular Genetics, 19(21), 4286–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage, 45, S163–S172.

    Article  PubMed  Google Scholar 

  • Chan, J. C. W., Chan, K. P., & Yeh, A. G. O. (2001). Detecting the nature of change in an urban environment: A comparison of machine learning algorithms. Photogrammetric Engineering and Remote Sensing, 67(2), 213–226.

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Dayhoff, J. E., & DeLeo, J. M. (2001). Artificial neural networks. Cancer, 91(S8), 1615–1635.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, P. K., Harris, S., Yuille, A., & Cohen, M. S. (2011). Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. Neuroimage, 56(2), 544–553.

    Article  CAS  PubMed  Google Scholar 

  • Formisano, E., De Martino, F., Valente, G. (2008). Multivariate analysis of fMRI time series: Classification and regression of brain responses using machine learning. Magnetic Resonance Imaging, 26(7), 921–934.

  • Gevrey, M., Dimopoulos, I., & Lek, S. (2006). Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecological Modelling, 195(1), 43–50.

    Article  Google Scholar 

  • Goldstein, B. A., Hubbard, A. E., Cutler, A., & Barcellos, L. F. (2010). An application of random forests to a genome-wide association dataset: Methodological considerations & new findings. BMC Genetics, 11(1), 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.

    Google Scholar 

  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1–3), 389–422.

    Article  Google Scholar 

  • Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time-series via clustering and visualization. NeuroImage, 22(3), 1214–1222.

    Article  PubMed  Google Scholar 

  • Ion-Mărgineanu, A., Kocevar, G., Stamile, C., Sima, D. M., Durand-Dubief, F., Van Huffel, S., Sappey-Marinier, D. (2017). Machine learning approach for classifying multiple sclerosis courses by combining clinical data with lesion loads and magnetic resonance metabolic features. Frontiers in Neuroscience, 11, 398.

  • Keller, A., Leidinger, P., Lange, J., Borries, A., Schroers, H., Scheffler, et al. (2009). Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One, 4(10), e7440.

  • Kumar, M., & Thenmozhi, M. (2006). Forecasting stock index movement: A comparison of support vector machines and random forest. Indian Institute of Capital Markets 9th Capital Markets Conference. http://ssrn.com/abstract, =876544.

  • LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26(2), 317–329.

    Article  PubMed  Google Scholar 

  • Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K. R. (2011). Introduction to machine learning for brain imaging. Neuroimage, 56(2), 387–399.

    Article  PubMed  Google Scholar 

  • Liu, M., Wang, M., Wang, J., & Li, D. (2013). Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sensors and Actuators B: Chemical, 177, 970–980.

    Article  CAS  Google Scholar 

  • Lowe, M. J., Beall, E. B., Sakaie, K. E., Koenig, K. A., Stone, L., Marrie, R. A., & Phillips, M. D. (2008). Resting state sensori-motor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Human Brain Mapping, 29(7), 818–827.

    Article  PubMed  Google Scholar 

  • Mesaros, S., Rocca, M. A., Kacar, K., Kostic, J., Copetti, M., Stosic-Opincal, T., et al. (2012). Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology, 78(13), 969–975.

    Article  CAS  PubMed  Google Scholar 

  • Mezzapesa, D. M., Rocca, M. A., Rodegher, M., Comi, G., et al. (2008). Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Human Brain Mapping, 29(5), 562–573.

    Article  PubMed  Google Scholar 

  • Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage, 53(1), 103–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mourão-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data. NeuroImage, 28(4), 980–995.

    Article  PubMed  Google Scholar 

  • Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia.

  • Pang, B., Lee, L., Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79–86). Association for Computational Linguistics, https://doi.org/10.3115/1118693.1118704

  • Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45(1), S199–S209.

    Article  PubMed  Google Scholar 

  • Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883.

    Article  Google Scholar 

  • Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology, 69(2), 292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rachakonda, S., Egolf, E., Correa, N., Calhoun, V. (2007). Group ICA of fMRI toolbox (GIFT) manual. Dostupné z http://www.nitrc.org/docman/view. Php/55/295/v1. 3d_ GIFTManual pdf [cit. 2011-11-5].

  • Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation (pp. 532–538). Springer US: In Encyclopedia of database systems.

    Google Scholar 

  • Richiardi, J., Gschwind, M., Simioni, S., Annoni, J. M., Greco, B., Hagmann, P., et al. (2012). Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage, 62(3), 2021–2033.

    Article  PubMed  Google Scholar 

  • Rocca, M. A., Absinta, M., Valsasina, P., Ciccarelli, O., Marino, S., Rovira, A., et al. (2009). Abnormal connectivity of the sensori-motor network in patients with MS: A multicenter fMRI study. Human Brain Mapping, 30(8), 2412–2425.

    Article  PubMed  Google Scholar 

  • Sbardella, E., Petsas, N., Tona, F., and Pantano, P. (2015). Resting-State fMRI in MS: General Concepts and Brief Overview of Its Application. Biomed Res Int, 212693.

  • Sivapriya, T. R., Kamal, A. R., Thangaiah, P. (2015). Ensemble Merit Merge Feature Selection for Enhanced Multinomial Classification in Alzheimer’s Dementia. Computational and mathematical methods in medicine, 2015.

  • Statnikov, A., Wang, L., & Aliferis, C. F. (2008). A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics, 9(1), 319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team, R. C. (2000). R language definition. Vienna, Austria: R foundation for statistical computing. http://www.R-project.org/

  • The CAMMS223 Trial Investigators. (2008). Alemtuzumab vs. interferon Beta-1a in early multiple sclerosis. The New England Journal of Medicine, 359, 1786–1801.

    Article  Google Scholar 

  • Ulrich, R., Kalkuhl, A., Deschl, U., & Baumgärtner, W. (2010). Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. Journal of Cellular and Molecular Medicine, 14(1–2), 434–448.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Childress, A. R., Wang, J., & Detre, J. A. (2007). Support vector machine learning-based fMRI data group analysis. NeuroImage, 36(4), 1139–1151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, D., Arimura, H., Kakeda, S., Magome, T., Yamashita, Y., Toyofuku, F., et al. (2010). Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine. Computerized Medical Imaging and Graphics, 34(5), 404–413.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Novellino.

Ethics declarations

Disclosure

This study was not financially supported.

Conflict of interest

All of the authors reported no biomedical financial interests or potential conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccà, V., Sarica, A., Novellino, F. et al. Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data. Brain Imaging and Behavior 13, 1103–1114 (2019). https://doi.org/10.1007/s11682-018-9926-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9926-9

Keywords

Navigation