Skip to main content
Log in

Prevalence of Endocrine Disorders in Morbidly Obese Patients and the Effects of Bariatric Surgery on Endocrine and Metabolic Parameters

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Several endocrine abnormalities, including hypothyroidism and Cushing’s syndrome (CS), are considered as causative factors of obesity. The aim of this study was to evaluate the prevalence of endocrine disorders and obesity-associated co-morbidities, as well as the impact of substantial weight loss.

Methods

Screening was performed in 433 consecutive morbidly obese patients (age 41 ± 12 years; BMI 47 ± 6.9 kg/m2; women 76%). A 1-mg dexamethasone suppression test (1-mg DST) was conducted to exclude CS, and thyrotropin (TSH) was measured to exclude hypothyroidism. Insulin sensitivity was estimated from oral glucose tolerance tests employing the Clamp-like index. Examinations were carried out at baseline, as well as at 6 and 12 months postoperatively.

Results

The prevalence of CS was below 0.6%. Before surgery, TSH was elevated compared to an age- and sex-matched normal weight control group (2.4 ± 1.2 vs. 1.5 ± 0.7 μU/ml; p < 0.001). The NCEP criteria of metabolic syndrome (MetS) were fulfilled by 39.5% of the patients. Impaired glucose tolerance and diabetes mellitus were observed in 23.5% and 22.6%, respectively. Seventy-two percent were insulin resistant. During follow-up, weight (BMI 47 ± 6.9 vs. 36 ± 6.4 vs. 32 ± 6.6 kg/m2; p < 0.001) and TSH decreased significantly (2.4 ± 1.2 vs. 1.8 ± 1.0 vs. 1.8 ± 1.0 μU/ml; p < 0.001). Serum cortisol was higher in the MetS+-group compared to the MetS--group (15.0 ± 6.3 vs. 13.5 ± 6.3 μg/dl; p = 0.003).

Conclusions

CS appears to be a rare cause of morbid obesity. Normalization of slightly elevated thyrotropin after weight loss suggests that obesity causes TSH elevation rather than the reverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kokkoris P, Pi-Sunyer FX. Obesity and endocrine disease. Endocrinol Metab Clin North Am. 2003;32:895–914.

    Article  PubMed  CAS  Google Scholar 

  2. Maddox GL, Liederman V. Overweight as a social disability with medical implications. J Med Educ. 1969;44:214–20.

    PubMed  CAS  Google Scholar 

  3. Price JH, Desmond SM, Krol RA, et al. Family practice physicians’ beliefs, attitudes, and practices regarding obesity. Am J Prev Med. 1987;3:339–45.

    PubMed  CAS  Google Scholar 

  4. Michalaki MA, Vagenakis AG, Leonardou AS, et al. Thyroid function in humans with morbid obesity. Thyroid. 2006;16:73–8.

    Article  PubMed  CAS  Google Scholar 

  5. Sari R, Balci MK, Altunbas H, et al. The effect of body weight and weight loss on thyroid volume and function in obese women. Clin Endocrinol (Oxf). 2003;59:258–62.

    Article  Google Scholar 

  6. Raftopoulos Y, Gagne DJ, Papasavas P, et al. Improvement of hypothyroidism after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Obes Surg. 2004;14:509–13.

    Article  PubMed  Google Scholar 

  7. Fazylov R, Soto E, Cohen S, et al. Laparoscopic Roux-en-Y gastric bypass surgery on morbidly obese patients with hypothyroidism. Obes Surg. 2008;18:644–7.

    Article  PubMed  Google Scholar 

  8. Alagna S, Cossu ML, Masala A, et al. Evaluation of serum leptin levels and thyroid function in morbidly obese patients treated with bariatric surgery. Eat Weight Disord. 2003;8:95–9.

    PubMed  CAS  Google Scholar 

  9. Buscemi S, Verga S, Maneri R, et al. Influences of obesity and weight loss on thyroid hormones. A 3–3.5-year follow-up study on obese subjects with surgical bilio-pancreatic by-pass. J Endocrinol Invest. 1997;20:276–81.

    PubMed  CAS  Google Scholar 

  10. Catargi B, Rigalleau V, Poussin A, et al. Occult Cushing’s syndrome in type-2 diabetes. J Clin Endocrinol Metab. 2003;88:5808–13.

    Article  PubMed  CAS  Google Scholar 

  11. Omura M, Saito J, Yamaguchi K, et al. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res. 2004;27:193–202.

    Article  PubMed  Google Scholar 

  12. Anderson Jr GH, Blakeman N, Streeten DH. The effect of age on prevalence of secondary forms of hypertension in 4429 consecutively referred patients. J Hypertens. 1994;12:609–15.

    Article  PubMed  Google Scholar 

  13. Tiryakioglu O, Ugurlu S, Yalin S, et al. Screening for Cushing’s syndrome in obese patients. Clinics (Sao Paulo). 2010;65:9–13.

    Article  Google Scholar 

  14. Anderwald C, Anderwald-Stadler M, Promintzer M, et al. The Clamp-like index: a novel and highly sensitive insulin sensitivity index to calculate hyperinsulinemic clamp glucose infusion rates from oral glucose tolerance tests in nondiabetic subjects. Diabetes Care. 2007;30:2374–80.

    Article  PubMed  CAS  Google Scholar 

  15. Promintzer M, Krebs M, Todoric J, et al. Insulin resistance is unrelated to circulating retinol binding protein and protein C inhibitor. J Clin Endocrinol Metab. 2007;92:4306–12.

    Article  PubMed  CAS  Google Scholar 

  16. Chiodini I. Diagnosis and treatment of subclinical hypercortisolism. J Clin Endocrinol Metab. 2011.

  17. Nickelsen T, Lissner W, Schoffling K. The dexamethasone suppression test and long-term contraceptive treatment: measurement of ACTH or salivary cortisol does not improve the reliability of the test. Exp Clin Endocrinol. 1989;94:275–80.

    Article  PubMed  CAS  Google Scholar 

  18. Qureshi AC, Bahri A, Breen LA, et al. The influence of the route of oestrogen administration on serum levels of cortisol-binding globulin and total cortisol. Clin Endocrinol (Oxf). 2007;66:632–5.

    Article  CAS  Google Scholar 

  19. Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93:1526–40.

    Article  PubMed  CAS  Google Scholar 

  20. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.

    Google Scholar 

  21. Baid SK, Rubino D, Sinaii N, et al. Specificity of screening tests for Cushing’s syndrome in an overweight and obese population. J Clin Endocrinol Metab. 2009;94:3857–64.

    Article  PubMed  CAS  Google Scholar 

  22. Cooper DS. Clinical practice. Subclinical hypothyroidism. N Engl J Med. 2001;345:260–5.

    Article  PubMed  CAS  Google Scholar 

  23. Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol Metab Clin North Am. 2002;31:173–89.

    Article  PubMed  CAS  Google Scholar 

  24. al-Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metab. 1997;82:1118–25.

    Article  PubMed  CAS  Google Scholar 

  25. Sorisky A, Bell A, Gagnon A. TSH receptor in adipose cells. Horm Metab Res. 2000;32:468–74.

    Article  PubMed  CAS  Google Scholar 

  26. Valyasevi RW, Harteneck DA, Dutton CM, et al. Stimulation of adipogenesis, peroxisome proliferator-activated receptor-gamma (PPARgamma), and thyrotropin receptor by PPARgamma agonist in human orbital preadipocyte fibroblasts. J Clin Endocrinol Metab. 2002;87:2352–8.

    Article  PubMed  CAS  Google Scholar 

  27. Guo F, Bakal K, Minokoshi Y, et al. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology. 2004;145:2221–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kok P, Roelfsema F, Langendonk JG, et al. High circulating thyrotropin levels in obese women are reduced after body weight loss induced by caloric restriction. J Clin Endocrinol Metab. 2005;90:4659–63.

    Article  PubMed  CAS  Google Scholar 

  29. de Moraes CM Moulin, Mancini MC, de Melo ME, et al. Prevalence of subclinical hypothyroidism in a morbidly obese population and improvement after weight loss induced by Roux-en-Y gastric bypass. Obes Surg. 2005;15:1287–91.

    Article  Google Scholar 

  30. Reinehr T. Obesity and thyroid function. Mol Cell Endocrinol. 2010;316:165–71.

    Article  PubMed  CAS  Google Scholar 

  31. Stewart PM, Boulton A, Kumar S, et al. Cortisol metabolism in human obesity: impaired cortisone– > cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab. 1999;84:1022–7.

    Article  PubMed  CAS  Google Scholar 

  32. Hautanen A, Raikkonen K, Adlercreutz H. Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med. 1997;241:451–61.

    Article  PubMed  CAS  Google Scholar 

  33. Manco M, Fernandez-Real JM, Valera-Mora ME, et al. Massive weight loss decreases corticosteroid-binding globulin levels and increases free cortisol in healthy obese patients: an adaptive phenomenon? Diabetes Care. 2007;30:1494–500.

    Article  PubMed  CAS  Google Scholar 

  34. Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest. 1997;99:414–23.

    Article  PubMed  CAS  Google Scholar 

  35. Mariniello B, Ronconi V, Rilli S, et al. Adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 expression in obesity and Cushing’s syndrome. Eur J Endocrinol. 2006;155:435–41.

    Article  PubMed  CAS  Google Scholar 

  36. Desbriere R, Vuaroqueaux V, Achard V, et al. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity (Silver Spring). 2006;14:794–8.

    Article  CAS  Google Scholar 

  37. Ricketts ML, Verhaeg JM, Bujalska I, et al. Immunohistochemical localization of type 1 11beta-hydroxysteroid dehydrogenase in human tissues. J Clin Endocrinol Metab. 1998;83:1325–35.

    Article  PubMed  CAS  Google Scholar 

  38. Freeman L, Hewison M, Hughes SV, et al. Expression of 11beta-hydroxysteroid dehydrogenase type 1 permits regulation of glucocorticoid bioavailability by human dendritic cells. Blood. 2005;106:2042–9.

    Article  PubMed  CAS  Google Scholar 

  39. Munoz R, Carvajal C, Escalona A, et al. 11beta-hydroxysteroid dehydrogenase type 1 is overexpressed in subcutaneous adipose tissue of morbidly obese patients. Obes Surg. 2009;19:764–70.

    Article  PubMed  Google Scholar 

  40. Anagnostis P, Athyros VG, Tziomalos K, et al. Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94:2692–701.

    Article  PubMed  CAS  Google Scholar 

  41. Ward AM, Fall CH, Stein CE, et al. Cortisol and the metabolic syndrome in South Asians. Clin Endocrinol (Oxf). 2003;58:500–5.

    Article  CAS  Google Scholar 

  42. Ravaja N, Keltikangas-Jarvinen L, Viikari J. Life changes, locus of control and metabolic syndrome precursors in adolescents and young adults: a three-year follow-up. Soc Sci Med. 1996;43:51–61.

    Article  PubMed  CAS  Google Scholar 

  43. Karelis AD, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004;30:569–72.

    Article  PubMed  CAS  Google Scholar 

  44. Karelis AD, Faraj M, Bastard JP, et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005;90:4145–50.

    Article  PubMed  CAS  Google Scholar 

  45. Primeau V, Coderre L, Karelis AD, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond). 2010.

  46. Bonora E, Kiechl S, Willeit J, et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes. 1998;47:1643–9.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrannini E, Natali A, Bell P, et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest. 1997;100:1166–73.

    Article  PubMed  CAS  Google Scholar 

  48. Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168:1617–24.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest disclosure

DJ, PW, CHA, YW, MPS, AH, FL, GP, BL, AG, AL and MK declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krebs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janković, D., Wolf, P., Anderwald, CH. et al. Prevalence of Endocrine Disorders in Morbidly Obese Patients and the Effects of Bariatric Surgery on Endocrine and Metabolic Parameters. OBES SURG 22, 62–69 (2012). https://doi.org/10.1007/s11695-011-0545-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-011-0545-4

Keywords

Navigation