Skip to main content
Erschienen in: Obesity Surgery 2/2017

20.07.2016 | Original Contributions

Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats

verfasst von: Yikai Shao, Rui Ding, Bo Xu, Rong Hua, Qiwei Shen, Kai He, Qiyuan Yao

Erschienen in: Obesity Surgery | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

The objective of the study was to compare gut microbiota post Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG).

Methods

Sprague-Dawley rats were randomized to RYGB, SG, or sham surgery. Body weight was measured. Fecal samples were collected before and 1, 3, 6, and 9 weeks postoperatively. Fecal microbiota was profiled by 16S ribosomal DNA gene sequencing and analyzed using Quantitative Insights into Microbial Ecology (QIIME) to determine the α and β diversities of gut microbiota.

Results

The body weight of the RYGB and SG group was significantly lower than that of the sham group. Unweighted UniFrac-based principal coordinate analysis of 5,323,091 sequences from 85 fecal samples from 17 rats revealed a distinct cluster of gut microbiota post RYGB from SG and sham surgery. The percentage of Proteobacteria in the SG and sham group remained markedly lower than that of the RYGB group from 3 weeks postoperatively, while the proportion of Gammaproteobacteria in the RYGB group was significantly higher than that of the SG group and the sham group from 3 weeks postoperatively. Furthermore, the RYGB group was postoperatively enriched for Gammaproteobacteria and Bacteroidaceae, whereas the SG group was postoperatively enriched for Desulfovibrionaceae and Cyanobacteria. Compared to the pre-operative parameters, the RYGB group had a persistent increase in the relative abundance of Gammaproteobacteria and a decrease in the Shannon index, while the SG group only transiently exhibited these changes within the first week after surgery. The relative abundance of Gammaproteobacteria was negatively correlated, whereas the Shannon index was positively correlated with weight after surgery.

Conclusions

RYGB, but not SG, alters the gut microbiota of Sprague-Dawley rats. RYGB also reduces the diversity of gut microbiota. Furthermore, the abundance of Gammaproteobacteria negatively correlates with postoperative body weight and may be one of the potential contributors to stable weight loss after bariatric surgery.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Duca F A, Sakar Y, Lepage P, et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese prone rat [J]. Diabetes, 2014: DB_131526. Duca F A, Sakar Y, Lepage P, et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese prone rat [J]. Diabetes, 2014: DB_131526.
3.
Zurück zum Zitat Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature. 2006;444(7122):1027–131.CrossRefPubMed Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature. 2006;444(7122):1027–131.CrossRefPubMed
4.
Zurück zum Zitat Sanz Y, Santacruz A, De Palma G. Insights into the roles of gut microbes in obesity [J]. Interdisciplinary perspectives on infectious diseases, 2008, 2008. Sanz Y, Santacruz A, De Palma G. Insights into the roles of gut microbes in obesity [J]. Interdisciplinary perspectives on infectious diseases, 2008, 2008.
5.
Zurück zum Zitat Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice [J]. Diabetes. 2008;57(6):1470–81.CrossRefPubMed Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice [J]. Diabetes. 2008;57(6):1470–81.CrossRefPubMed
6.
Zurück zum Zitat Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins [J]. Nature. 2009;457(7228):480–4.CrossRefPubMed Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins [J]. Nature. 2009;457(7228):480–4.CrossRefPubMed
7.
8.
Zurück zum Zitat Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss links with metabolic and low-grade inflammation markers [J]. Diabetes. 2010;59(12):3049–57.CrossRefPubMedPubMedCentral Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss links with metabolic and low-grade inflammation markers [J]. Diabetes. 2010;59(12):3049–57.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters [J]. Pharmacogenomics J. 2013;13(6):514–22.CrossRefPubMed Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters [J]. Pharmacogenomics J. 2013;13(6):514–22.CrossRefPubMed
10.
Zurück zum Zitat Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity [J]. Sci Transl Med. 2013;5(178):178–ra41-178ra41.CrossRef Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity [J]. Sci Transl Med. 2013;5(178):178–ra41-178ra41.CrossRef
11.
Zurück zum Zitat Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice [J]. Science. 2013;341(6150):1241214.CrossRefPubMed Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice [J]. Science. 2013;341(6150):1241214.CrossRefPubMed
12.
Zurück zum Zitat Shabbir A, Dargan D. The success of sleeve gastrectomy in the management of metabolic syndrome and obesity [J]. J Biol Res. 2015;29(2):93. Shabbir A, Dargan D. The success of sleeve gastrectomy in the management of metabolic syndrome and obesity [J]. J Biol Res. 2015;29(2):93.
13.
Zurück zum Zitat Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery worldwide 2013[J]. Obes Surg. 2015;25(10):1822–32.CrossRefPubMed Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery worldwide 2013[J]. Obes Surg. 2015;25(10):1822–32.CrossRefPubMed
14.
Zurück zum Zitat Damms-Machado A, Mitra S, Schollenberger A E, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption [J]. BioMed research international, 2015, 2015. Damms-Machado A, Mitra S, Schollenberger A E, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption [J]. BioMed research international, 2015, 2015.
15.
Zurück zum Zitat Gralka E, Luchinat C, Tenori L, et al. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner [J]. Am J Clin Nutr. 2015;102(6):1313–22.CrossRefPubMed Gralka E, Luchinat C, Tenori L, et al. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner [J]. Am J Clin Nutr. 2015;102(6):1313–22.CrossRefPubMed
16.
Zurück zum Zitat Xu B, Yan X, Shao Y, et al. A comparative study of the effect of gastric bypass, sleeve gastrectomy, and duodenal–jejunal bypass on type-2 diabetes in non-obese rats [J]. Obes Surg. 2015;25(10):1966–75.CrossRefPubMed Xu B, Yan X, Shao Y, et al. A comparative study of the effect of gastric bypass, sleeve gastrectomy, and duodenal–jejunal bypass on type-2 diabetes in non-obese rats [J]. Obes Surg. 2015;25(10):1966–75.CrossRefPubMed
17.
Zurück zum Zitat Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nat Methods. 2010;7(5):335–6.CrossRefPubMedPubMedCentral Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nat Methods. 2010;7(5):335–6.CrossRefPubMedPubMedCentral
18.
19.
Zurück zum Zitat Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing [J]. Nat Methods. 2013;10(1):57–9.CrossRefPubMed Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing [J]. Nat Methods. 2013;10(1):57–9.CrossRefPubMed
21.
Zurück zum Zitat Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial–host metabolic cross-talk [J]. Gut. 2011;60(9):1214–23.CrossRefPubMedPubMedCentral Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial–host metabolic cross-talk [J]. Gut. 2011;60(9):1214–23.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome [J]. Diabetes. 2015;64(8):2847–58.CrossRefPubMedPubMedCentral Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome [J]. Diabetes. 2015;64(8):2847–58.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology [J]. Gut. 2015:2014–308778. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology [J]. Gut. 2015:2014–308778.
24.
Zurück zum Zitat Carmody RN, Gerber GK, Luevano JM, et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe. 2015;17(1):72–84.CrossRefPubMed Carmody RN, Gerber GK, Luevano JM, et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe. 2015;17(1):72–84.CrossRefPubMed
25.
Zurück zum Zitat Engevik MA, Hickerson A, Shull GE, et al. Acidic conditions in the NHE2−/− mouse intestine result in an altered mucosa-associated bacterial population with changes in mucus oligosaccharides [J]. Cell Physiol Biochem. 2013;32(7):111–28.CrossRefPubMed Engevik MA, Hickerson A, Shull GE, et al. Acidic conditions in the NHE2−/− mouse intestine result in an altered mucosa-associated bacterial population with changes in mucus oligosaccharides [J]. Cell Physiol Biochem. 2013;32(7):111–28.CrossRefPubMed
26.
Zurück zum Zitat Engevik MA, Aihara E, Montrose MH, et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth [J]. Am J Physiol Gastrointest Liver Physiol. 2013;305(10):G697–711.CrossRefPubMedPubMedCentral Engevik MA, Aihara E, Montrose MH, et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth [J]. Am J Physiol Gastrointest Liver Physiol. 2013;305(10):G697–711.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Smith CD, Herkes SB, Behrns KE, et al. Gastric acid secretion and vitamin B12 absorption after vertical Roux-en-Y gastric bypass for morbid obesity [J]. Ann Surg. 1993;218(1):91.CrossRefPubMedPubMedCentral Smith CD, Herkes SB, Behrns KE, et al. Gastric acid secretion and vitamin B12 absorption after vertical Roux-en-Y gastric bypass for morbid obesity [J]. Ann Surg. 1993;218(1):91.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Islam KBMS, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology. 2011;141(5):1773–81.CrossRefPubMed Islam KBMS, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology. 2011;141(5):1773–81.CrossRefPubMed
29.
Zurück zum Zitat Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile [J]. FEMS Microbiol Rev. 2005;29(4):625–51.CrossRefPubMed Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile [J]. FEMS Microbiol Rev. 2005;29(4):625–51.CrossRefPubMed
30.
Zurück zum Zitat Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor [J]. Proc Natl Acad Sci U S A. 2006;103(10):3920–5.CrossRefPubMedPubMedCentral Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor [J]. Proc Natl Acad Sci U S A. 2006;103(10):3920–5.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota [J]. Nat Rev Microbiol. 2012;10(5):323–35.PubMedPubMedCentral Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota [J]. Nat Rev Microbiol. 2012;10(5):323–35.PubMedPubMedCentral
32.
Zurück zum Zitat Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota [J]. Gastroenterology. 2014;147(5):1055–1063. e8.CrossRefPubMedPubMedCentral Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota [J]. Gastroenterology. 2014;147(5):1055–1063. e8.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy [J]. Nature. 2014;509(7499):183–8.CrossRefPubMedPubMedCentral Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy [J]. Nature. 2014;509(7499):183–8.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Daniel H, Gholami AM, Berry D, et al. High-fat diet alters gut microbiota physiology in mice [J]. ISME J. 2014;8(2):295–308.CrossRefPubMed Daniel H, Gholami AM, Berry D, et al. High-fat diet alters gut microbiota physiology in mice [J]. ISME J. 2014;8(2):295–308.CrossRefPubMed
Metadaten
Titel
Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats
verfasst von
Yikai Shao
Rui Ding
Bo Xu
Rong Hua
Qiwei Shen
Kai He
Qiyuan Yao
Publikationsdatum
20.07.2016
Verlag
Springer US
Erschienen in
Obesity Surgery / Ausgabe 2/2017
Print ISSN: 0960-8923
Elektronische ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-016-2297-7

Weitere Artikel der Ausgabe 2/2017

Obesity Surgery 2/2017 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.