Skip to main content
Log in

Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Laparoscopic sleeve gastrectomy (LSG) is increasingly being applied to treat obesity. LSG includes excision of the normal gastric pacemaker, which could induce electrical dysrhythmias impacting on post-operative symptoms and recovery, but these implications have not been adequately investigated. This study aimed to define the effects of LSG on gastric slow-wave pacemaking using laparoscopic high-resolution (HR) electrical mapping.

Methods

Laparoscopic HR mapping was performed before and after LSG using flexible printed circuit arrays (64–96 electrodes; 8–12 cm2; n = 8 patients) deployed through a 12 mm trocar and positioned on the gastric serosa. An additional patient with chronic reflux, nausea, and dysmotility 6 months after LSG also underwent gastric mapping while undergoing conversion to gastric bypass. Slow-wave activity was quantified by propagation pattern, frequency, velocity, and amplitude.

Results

Baseline activity showed exclusively normal propagation. Acutely after LSG, all patients developed either a distal unifocal ectopic pacemaker with retrograde propagation (50%) or bioelectrical quiescence (50%). Propagation velocity was abnormally rapid after LSG (12.5 ± 0.8 vs baseline 3.8 ± 0.8 mm s−1; p = 0.01), whereas frequency and amplitude were unchanged (2.7 ± 0.3 vs 2.8 ± 0.3 cpm, p = 0.7; 1.7 ± 0.2 vs 1.6 ± 0.6 mV, p = 0.7). In the patient with chronic dysmotility after LSG, mapping also revealed a stable antral ectopic pacemaker with retrograde rapid propagation (12.6 ± 4.8 mm s−1).

Conclusion

Resection of the gastric pacemaker during LSG acutely resulted in aberrant distal ectopic pacemaking or bioelectrical quiescence. Ectopic pacemaking can persist long after LSG, inducing chronic dysmotility. The clinical and therapeutic significance of these findings now require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frezza EE, Reddy S, Gee LL, et al. Complications after sleeve gastrectomy for morbid obesity. Obes Surg. 2009;19:684–7.

    Article  PubMed  Google Scholar 

  2. Daes J, Jimenez ME, Said N, et al. Laparoscopic sleeve gastrectomy: symptoms of gastroesophageal reflux can be reduced by changes in surgical technique. Obes Surg. 2012;22:1874–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weiner RA, El-Sayes IA, Weiner SR. LSG: complications—diagnosis and management. Obesity, Bariatric and Metabolic Surgery. Springer; 2016. p. 259–276.

  4. Hinder RA, Kelly KA. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg. 1977;133:29–33.

    Article  CAS  PubMed  Google Scholar 

  5. O’Grady G, Du P, Cheng LK, et al. The origin and propagation of human gastric slow wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol. 2010;299:585–92.

    Article  Google Scholar 

  6. Angeli TR, Cheng LK, Du P, et al. Loss of interstitial cells of Cajal and patterns of gastric dysrhythmia in patients with chronic unexplained nausea and vomiting. Gastroenterology. 2015;149:56–66. e5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leahy A, Besherdas K, Clayman C, et al. Gastric dysrhythmias occur in gastro-oesophageal reflux disease complicated by food regurgitation but not in uncomplicated reflux. Gut. 2001;48:212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Grady G, Wang TH, Du P, et al. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol. 2014;41:854–62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Greenstein RJ, Sarr MG. Electrogastrography: the study of gastric myoelectric activity. Possible insights into symptoms after restrictive bariatric surgery. Obes Surg. 2003;13:669–70.

    Article  PubMed  Google Scholar 

  10. van Dielen FM, de Cock AF, Daams F, et al. Gastric myoelectrical activity in morbidly obese patients before and 3 months after gastric restrictive surgery. Obes Surg. 2003;13:721–7.

    Article  PubMed  Google Scholar 

  11. Parkman HP, Hasler WL, Barnett JL, et al. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil. 2003;2003:89–102.

    Article  Google Scholar 

  12. Lammers WJEP, Ver Donck L, Stephen B, et al. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology. 2008;135:1601–11.

    Article  PubMed  Google Scholar 

  13. Du P, Hameed A, Angeli TR, et al. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Neurogastroenterol Motil. 2015;27:1409–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Grady G, Angeli TR, Du P, et al. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology. 2012;143:589–98. e1

    Article  PubMed  PubMed Central  Google Scholar 

  15. O’Grady G, Angeli T, Lammers WJ. The principles and practice of gastrointestinal high-resolution mapping. In: Cheng LK, Farrugia G, Pullan AJ, editors. New advances in gastrointestinal motility research. New York: Springer; 2013. p. 51–69.

    Chapter  Google Scholar 

  16. Du P, O’Grady G, Egbuji JU, et al. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng. 2009;37:839–46.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Angeli TR, Du P, Paskaranandavadivel N, et al. The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. J Physiol. 2013;591:4567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yassi R, O’Grady G, Paskaranandavadivel N, et al. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol. 2012;12:60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paskaranandavadivel N, O’Grady G, Du P, et al. Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol Motil. 2013;25:79–83.

    Article  PubMed  Google Scholar 

  20. Erickson JC, O’Grady G, Du P, et al. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in serosal high-resolution electrical recordings. Ann Biomed Eng. 2010;38:1511–29.

    Article  PubMed  Google Scholar 

  21. Erickson JC, O’Grady G, Du P, et al. Automated cycle partitioning and visualization of high-resolution activation time maps of gastric slow wave recordings: the region growing using polynomial surface-estimate stabilization (REGROUPS) algorithm. Ann Biomed Eng. 2011;39:469–83.

    Article  PubMed  Google Scholar 

  22. Paskaranandavadivel N, O’Grady G, Du P, et al. An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE Trans Biomed Eng. 2012;59:882–9.

    Article  PubMed  Google Scholar 

  23. Baltasar A, Serra C, Perez N, et al. Laparoscopic sleeve gastrectomy: a multi-purpose bariatric operation. Obes Surg. 2005;15:1124–8.

    Article  PubMed  Google Scholar 

  24. Berry R, Paskaranandavadivel N, Du P, et al. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns. Surg Endosc. 2017;31:477–86.

    Article  PubMed  Google Scholar 

  25. van Helden DF, Laver DR, Holdsworth J, et al. The generation and propagation of gastric slow waves. Clin Exp Pharmacol Physiol. 2010;37:516–24.

    Article  PubMed  Google Scholar 

  26. Kelly KA, Code CF. Canine gastric pacemaker. Am J Phys. 1971;220:112–8.

    CAS  Google Scholar 

  27. Komuro R, Cheng LK, Pullan AJ. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity. Ann Biomed Eng. 2008;36:1049–59.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weber J, Kohatsu S. Pacemaker localization and electrical conduction patterns in the canine stomach. Gastroenterology. 1970;59:717–26.

    PubMed  Google Scholar 

  29. Xue S, Valdez DT, Tremblay L, et al. Electrical slow wave activity of the cat stomach: its frequency gradient and the effect of indomethacin. Neurogastroenterol Motil. 1995;7:157–67.

    Article  CAS  PubMed  Google Scholar 

  30. Bracci F, Matarazzo E, Mosiello G, et al. Preliminary report of electrogastrography in pediatric gastroresection: can it be predictive of alteration of gastric motility? J Pediatr Surg. 2001;36:1157–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kauer WK, Stein HJ, Balint A, et al. Transcutaneous electrogastrography: a non-invasive method to evaluate post-operative gastric disorders. Hepato-Gastroenterology. 1999;46:1244–8.

    CAS  PubMed  Google Scholar 

  32. Lin ZY, McCallum RW, Schirmer BD, et al. Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis. Am J Phys. 1998;274:G186–91.

    CAS  Google Scholar 

  33. Bedi BS, Kelly KA, Holley KE. Pathways of propagation of the canine gastric pacesetter potential. Gastroenterology. 1972;63:288–96.

    CAS  PubMed  Google Scholar 

  34. Coleski R, Hasler WL. Coupling and propagation of normal and dysrhythmic gastric slow waves during acute hyperglycaemia in healthy humans. Neurogastroenterol Motil. 2009;21:492–9. e1

    Article  CAS  PubMed  Google Scholar 

  35. Miedema BW, Sarr MG, Kelly KA. Pacing the human stomach. Surgery. 1992;111:143–50.

    CAS  PubMed  Google Scholar 

  36. Paskaranandavadivel N, Wang R, Sathar S, et al. Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation. Neurogastroenterol Motil. 2015;27:580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Grady G, Du P, Lammers WJ, et al. High-resolution entrainment mapping for gastric pacing: a new analytic tool. Am J Physiol Gastrointest Liver Physiol. 2010;298:314–21.

    Article  Google Scholar 

  38. Grover M, Farrugia G, Lurken MS, et al. Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology. 2011;140:1575–85. e8

    Article  CAS  PubMed  Google Scholar 

  39. Abell TL, Johnson WD, Kedar A, et al. A double-masked, randomized, placebo-controlled trial of temporary endoscopic mucosal gastric electrical stimulation for gastroparesis. Gastrointest Endosc. 2011;74:496–503. e3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Angeli TR, Herrera Quesada MJ, Du P, et al. Gastric ablation as a novel therapeutic technique for modulating gastric slow wave activity. Gastroenterology. 2016;150:S721.

    Google Scholar 

  41. Angeli TR, Du P, Paskaranandavadivel N, et al. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface. Neurogastroenterol Motil. 2017; Ahead of Press. doi:10.1111/nmo.13010.

  42. Calder S, O’Grady G, Cheng L, Du P. A theoretical analysis of electrogastrography (EGG) signatures associated with gastric dysrhythmias. IEEE Trans Biomed Eng. 2017; Ahead of Press. doi:10.1109/TBME.2016.2614277.

  43. Paskaranandavadivel N, Gao J, Du P, et al. Automated classification and identification of slow wave propagation patterns in gastric dysrhythmia. Ann Biomed Eng. 2014;42:177–92.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Andrew MacCormick, Mr. Nicholas Evernett, and surgical staff for help with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory O’Grady.

Ethics declarations

Ethical approval for this work was granted by the Health and Disability Ethics Committee, New Zealand.

Funding

This project and research team were funded by research grants from the NZ Health Research Council (HRC), the US NIH (R01 DK64775), and the NZ MedTech CoRE. RB was supported by a Commonwealth Scholarship and PD by a Rutherford Discovery Fellowship.

Conflict of Interest

GOG, PD, NP, TRA, and LKC hold intellectual property in the field of gastric electrophysiology and are shareholders in FlexiMap. RB, TM, and GB declare no conflicts of interest. No commercial or industry financial support was provided for this study.

Ethical Statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(MP4 5061 kb)

ESM 2

(MP4 5555 kb)

ESM 3

(MP4 3239 kb)

ESM 4

(MP4 3703 kb)

ESM 5

(MP4 3973 kb)

ESM 6

(MP4 5337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, R., Cheng, L.K., Du, P. et al. Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping. OBES SURG 27, 1929–1937 (2017). https://doi.org/10.1007/s11695-017-2597-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-017-2597-6

Keywords

Navigation