Skip to main content
Erschienen in: Current Allergy and Asthma Reports 4/2018

01.04.2018 | Food Allergy (T Green, Section Editor)

Role of the Microbiome in Food Allergy

verfasst von: Hsi-en Ho, Supinda Bunyavanich

Erschienen in: Current Allergy and Asthma Reports | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Resident microbial communities likely modify risk for allergic disorders, including food allergy. We review epidemiologic studies linking microbial exposures to food allergy risk and discuss the mechanisms by which the microbiome may modulate oral tolerance. We additionally address ongoing translational efforts in human microbiome studies.

Recent Findings

Epidemiologic studies and murine models support that altered microbial exposures and colonization in early life modify food allergy risk. Differential microbiota confer protection or susceptibility to food allergy by modulating the regulatory tone of the mucosal immune system. Recent efforts are focused on the identification of bacterial strains necessary for oral tolerance in human and microbial-based clinical trials.

Summary

Early childhood appears to be critical for the colonization of a diverse microbiota necessary for the induction and maintenance of oral tolerance. Identification and functional evaluation of protective commensal microbes will inform strategies for the prevention and treatment of food allergy.
Literatur
3.
Zurück zum Zitat Huang YJ, Marsland BJ, Bunyavanich S, O'Mahony L, Leung DYM, Muraro A, et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017;139:1099–110. https://doi.org/10.1016/j.jaci.2017.02.007.CrossRefPubMed Huang YJ, Marsland BJ, Bunyavanich S, O'Mahony L, Leung DYM, Muraro A, et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017;139:1099–110. https://​doi.​org/​10.​1016/​j.​jaci.​2017.​02.​007.CrossRefPubMed
5.
Zurück zum Zitat • Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91. https://doi.org/10.1038/nm.4176. This is one of the first 16S rRNA-based studies showing that compositionally distinct neonatal human gut microbiota exist and are differentially related to relative risk of childhood atopy. In ex vivo experiments, microbiota associated with high atopy risk led to an increased proportion of IL-4 secreting CD4+ T cells and reduced proportion of Treg cells.CrossRefPubMedPubMedCentral • Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91. https://​doi.​org/​10.​1038/​nm.​4176. This is one of the first 16S rRNA-based studies showing that compositionally distinct neonatal human gut microbiota exist and are differentially related to relative risk of childhood atopy. In ex vivo experiments, microbiota associated with high atopy risk led to an increased proportion of IL-4 secreting CD4+ T cells and reduced proportion of Treg cells.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002;288:963–72.CrossRefPubMed Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002;288:963–72.CrossRefPubMed
16.
Zurück zum Zitat Raciborski F, Tomaszewska A, Komorowski J, Samel-Kowalik P, Białoszewski A, Artur W, et al. The relationship between antibiotic therapy in early childhood and the symptoms of allergy in children aged 6-8 years—the questionnaire study results. Int J Occup Med Environ Health. 2012;25:470–80. https://doi.org/10.2478/S13382-012-0056-0.CrossRefPubMed Raciborski F, Tomaszewska A, Komorowski J, Samel-Kowalik P, Białoszewski A, Artur W, et al. The relationship between antibiotic therapy in early childhood and the symptoms of allergy in children aged 6-8 years—the questionnaire study results. Int J Occup Med Environ Health. 2012;25:470–80. https://​doi.​org/​10.​2478/​S13382-012-0056-0.CrossRefPubMed
22.
Zurück zum Zitat Eggesbø M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003;112:420–6.CrossRefPubMed Eggesbø M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003;112:420–6.CrossRefPubMed
28.
Zurück zum Zitat Sepp E, Julge K, Vasar M, Naaber P, Björksten B, Mikelsaar M. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr. 1997;86:956–61.CrossRefPubMed Sepp E, Julge K, Vasar M, Naaber P, Björksten B, Mikelsaar M. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr. 1997;86:956–61.CrossRefPubMed
29.
Zurück zum Zitat Björksten B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy. 1999;29:342–6.CrossRefPubMed Björksten B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy. 1999;29:342–6.CrossRefPubMed
32.
Zurück zum Zitat Bashir MEH, Louie S, Shi HN, Nagler-Anderson C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol. 2004;172:6978–87.CrossRefPubMed Bashir MEH, Louie S, Shi HN, Nagler-Anderson C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol. 2004;172:6978–87.CrossRefPubMed
36.
Zurück zum Zitat •• Berni Canani R, Di Costanzo M, Bedogni G, et al. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 2017;139:1906–1913.e4. https://doi.org/10.1016/j.jaci.2016.10.050. This was a 3-year randomized controlled trial in cow’s milk-allergic children to evaluate the co-administration of Lactobacillus rhamnosus GG (LGG) and extensively hydrolyzed casein formula (EHCF). In contrast to the null effect of Lactobacillus casei supplementation reported in another trial [64], LGG+EHCF hastened the development of oral tolerance to cow’s milk and reduced the incidence of at least another atopic disorder during the follow-up period.CrossRefPubMed •• Berni Canani R, Di Costanzo M, Bedogni G, et al. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 2017;139:1906–1913.e4. https://​doi.​org/​10.​1016/​j.​jaci.​2016.​10.​050. This was a 3-year randomized controlled trial in cow’s milk-allergic children to evaluate the co-administration of Lactobacillus rhamnosus GG (LGG) and extensively hydrolyzed casein formula (EHCF). In contrast to the null effect of Lactobacillus casei supplementation reported in another trial [64], LGG+EHCF hastened the development of oral tolerance to cow’s milk and reduced the incidence of at least another atopic disorder during the follow-up period.CrossRefPubMed
38.
Zurück zum Zitat •• Bunyavanich S, Shen N, Grishin A, et al. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138:1122–30. https://doi.org/10.1016/j.jaci.2016.03.041. This study examined the association between early-life gut microbiota and resolution of cow’s milk allergy. Enrichment of gut Clostridia and Firmicutes at age 3–6 months was associated with milk allergy resolution by age 8 years, suggesting that early infancy is a window during which gut microbiota may shape food allergy outcomes.CrossRefPubMedPubMedCentral •• Bunyavanich S, Shen N, Grishin A, et al. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138:1122–30. https://​doi.​org/​10.​1016/​j.​jaci.​2016.​03.​041. This study examined the association between early-life gut microbiota and resolution of cow’s milk allergy. Enrichment of gut Clostridia and Firmicutes at age 3–6 months was associated with milk allergy resolution by age 8 years, suggesting that early infancy is a window during which gut microbiota may shape food allergy outcomes.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat •• Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci. 2014;111:13145–50. https://doi.org/10.1073/pnas.1412008111. By selectively colonizing gnotobiotic mice, the group demonstrated that food allergy-protective capacity is conferred by a Clostridia -containing microbiota. Importantly, the authors showed that Clostridia colonization induced intestinal IL-22 production, which resulted in reduced intestinal barrier permeability to food allergens.CrossRefPubMedPubMedCentral •• Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci. 2014;111:13145–50. https://​doi.​org/​10.​1073/​pnas.​1412008111. By selectively colonizing gnotobiotic mice, the group demonstrated that food allergy-protective capacity is conferred by a Clostridia -containing microbiota. Importantly, the authors showed that Clostridia colonization induced intestinal IL-22 production, which resulted in reduced intestinal barrier permeability to food allergens.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat •• Azad MB, Konya T, Guttman DS, et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015;45:632–43. https://doi.org/10.1111/cea.12487. Low gut microbiota richness, overrepresentation of infant gut Enterobacteriaceae , and underrepresentation of Bacteroidaceae at age 3 months were associated with subsequent food sensitization at age 1 year, suggesting that dysbiosis may precede the development of food allergy.CrossRefPubMed •• Azad MB, Konya T, Guttman DS, et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015;45:632–43. https://​doi.​org/​10.​1111/​cea.​12487. Low gut microbiota richness, overrepresentation of infant gut Enterobacteriaceae , and underrepresentation of Bacteroidaceae at age 3 months were associated with subsequent food sensitization at age 1 year, suggesting that dysbiosis may precede the development of food allergy.CrossRefPubMed
44.
Zurück zum Zitat Sudo N, Sawamura S, Tanaka K, et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol. 1997;159:1739–45.PubMed Sudo N, Sawamura S, Tanaka K, et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol. 1997;159:1739–45.PubMed
45.
Zurück zum Zitat • Fazlollahi M, Chun Y, Grishin A, et al. Early-life gut microbiome and egg allergy. Allergy. 2018; https://doi.org/10.1111/all.13389. This study showed a distinct early-life gut microbiome in egg-allergic and egg-sensitized children vs. controls. Genera from the Lachnospiraceae , Streptococcaceae , and Leuconostocaceae families were differentially abundant in children with egg allergy. • Fazlollahi M, Chun Y, Grishin A, et al. Early-life gut microbiome and egg allergy. Allergy. 2018; https://​doi.​org/​10.​1111/​all.​13389. This study showed a distinct early-life gut microbiome in egg-allergic and egg-sensitized children vs. controls. Genera from the Lachnospiraceae , Streptococcaceae , and Leuconostocaceae families were differentially abundant in children with egg allergy.
51.
Zurück zum Zitat •• Ohnmacht C, Park J-H, Cording S, MUCOSAL IMMUNOLOGY, et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science. 2015;349:989–93. https://doi.org/10.1126/science.aac4263. This study provides insights into the ways in which microbiota regulate type 2 immunity. RORγt+ Treg cells were profoundly reduced in germ-free or antibiotic-treated mice. In the absence of RORγt+ Treg cells, Th2-associated pathology after helminth infection was exacerbated, indicating that the microbiota regulated type 2 responses through the induction of RORγt+ Treg cells.CrossRefPubMed •• Ohnmacht C, Park J-H, Cording S, MUCOSAL IMMUNOLOGY, et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science. 2015;349:989–93. https://​doi.​org/​10.​1126/​science.​aac4263. This study provides insights into the ways in which microbiota regulate type 2 immunity. RORγt+ Treg cells were profoundly reduced in germ-free or antibiotic-treated mice. In the absence of RORγt+ Treg cells, Th2-associated pathology after helminth infection was exacerbated, indicating that the microbiota regulated type 2 responses through the induction of RORγt+ Treg cells.CrossRefPubMed
54.
Zurück zum Zitat •• Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288. https://doi.org/10.1126/science.1249288. This key study provides mechanistic insights into the role of commensal microbes in oral tolerance. In mice, microbial sensing by intestinal macrophage promoted IL-1β secretion, leading to GM-CSF release by type 3 innate lymphoid cells, and retinoid acid and IL-10 secretion by dendritic cells and macrophages, resulting in induction and expansion of mucosal Treg cells.CrossRefPubMedPubMedCentral •• Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288. https://​doi.​org/​10.​1126/​science.​1249288. This key study provides mechanistic insights into the role of commensal microbes in oral tolerance. In mice, microbial sensing by intestinal macrophage promoted IL-1β secretion, leading to GM-CSF release by type 3 innate lymphoid cells, and retinoid acid and IL-10 secretion by dendritic cells and macrophages, resulting in induction and expansion of mucosal Treg cells.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat • Wang S, Charbonnier L-M, Noval Rivas M, et al. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity. 2015;43:289–303. https://doi.org/10.1016/j.immuni.2015.06.014. In this murine study, Treg-cell-specific deletion of TLR adaptor MyD88 resulted in deficiency of intestinal Treg cell and impaired intestinal IgA production. This study indicated that microbial sensing by Treg cells via the TLR-MyD88 pathway was central to the promotion of mucosal tolerance.CrossRefPubMedPubMedCentral • Wang S, Charbonnier L-M, Noval Rivas M, et al. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity. 2015;43:289–303. https://​doi.​org/​10.​1016/​j.​immuni.​2015.​06.​014. In this murine study, Treg-cell-specific deletion of TLR adaptor MyD88 resulted in deficiency of intestinal Treg cell and impaired intestinal IgA production. This study indicated that microbial sensing by Treg cells via the TLR-MyD88 pathway was central to the promotion of mucosal tolerance.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820. This was the first study to demonstrate that the composition of gut microbiome can rapidly respond to diet. Its demonstration of close interaction between diet and commensal microbes indicates new possibilities for manipulations of the gut microbiome.CrossRefPubMed • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://​doi.​org/​10.​1038/​nature12820. This was the first study to demonstrate that the composition of gut microbiome can rapidly respond to diet. Its demonstration of close interaction between diet and commensal microbes indicates new possibilities for manipulations of the gut microbiome.CrossRefPubMed
66.
Zurück zum Zitat • Tang MLK, Ponsonby A-L, Orsini F, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135:737–44.e8. https://doi.org/10.1016/j.jaci.2014.11.034. This was the first placebo-controlled randomized trial in peanut-allergic children utilizing probiotic ( Lactobacillus rhamnosus ) and peanut oral immunotherapy. High sustained unresponsiveness to peanut (82.1%) was reported in the treatment arm; however, the specific contribution of probiotic was difficult to determine because there was no oral immunotherapy-only arm.CrossRefPubMed • Tang MLK, Ponsonby A-L, Orsini F, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135:737–44.e8. https://​doi.​org/​10.​1016/​j.​jaci.​2014.​11.​034. This was the first placebo-controlled randomized trial in peanut-allergic children utilizing probiotic ( Lactobacillus rhamnosus ) and peanut oral immunotherapy. High sustained unresponsiveness to peanut (82.1%) was reported in the treatment arm; however, the specific contribution of probiotic was difficult to determine because there was no oral immunotherapy-only arm.CrossRefPubMed
68.
Zurück zum Zitat Böttcher MF, Nordin EK, Sandin A, Midtvedt T, Björkstén B. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy. 2000;30:1590–6.CrossRefPubMed Böttcher MF, Nordin EK, Sandin A, Midtvedt T, Björkstén B. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy. 2000;30:1590–6.CrossRefPubMed
73.
Zurück zum Zitat • Bunyavanich S, Schadt EE. Systems biology of asthma and allergic diseases: a multiscale approach. J Allergy Clin Immunol. 2015;135:31–42. https://doi.org/10.1016/j.jaci.2014.10.015. A systems biology approach to asthma and allergic diseases could enable a more comprehensive understanding of the microbiome and complex disorders. Here the authors review recent applications of system-wide profiling to asthma and allergy and provide perspective on building network models to integrate multiscale data CrossRefPubMed • Bunyavanich S, Schadt EE. Systems biology of asthma and allergic diseases: a multiscale approach. J Allergy Clin Immunol. 2015;135:31–42. https://​doi.​org/​10.​1016/​j.​jaci.​2014.​10.​015. A systems biology approach to asthma and allergic diseases could enable a more comprehensive understanding of the microbiome and complex disorders. Here the authors review recent applications of system-wide profiling to asthma and allergy and provide perspective on building network models to integrate multiscale data CrossRefPubMed
Metadaten
Titel
Role of the Microbiome in Food Allergy
verfasst von
Hsi-en Ho
Supinda Bunyavanich
Publikationsdatum
01.04.2018
Verlag
Springer US
Erschienen in
Current Allergy and Asthma Reports / Ausgabe 4/2018
Print ISSN: 1529-7322
Elektronische ISSN: 1534-6315
DOI
https://doi.org/10.1007/s11882-018-0780-z

Weitere Artikel der Ausgabe 4/2018

Current Allergy and Asthma Reports 4/2018 Zur Ausgabe

Allergies and the Environment (M Hernandez, Section Editor)

Climate Change and the Impact on Respiratory and Allergic Disease: 2018

Rhinitis (JJ Oppenheimer and J Corren, Section Editors)

Treatment of Allergic Rhinitis as a Strategy for Preventing Asthma

Allergies and the Environment (M Hernandez, Section Editor)

How Do Storms Affect Asthma?

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.