Skip to main content
Erschienen in: Current Diabetes Reports 4/2012

01.08.2012 | Microvascular Complications—Retinopathy (JK Sun, Section Editor)

Novel Targets Against Retinal Angiogenesis in Diabetic Retinopathy

verfasst von: Shuang Wang, James K. Park, Elia J. Duh

Erschienen in: Current Diabetes Reports | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Proliferative diabetic retinopathy (PDR), characterized by pathologic retinal angiogenesis, is a major cause of blindness in the USA and globally. Treatments targeting vascular endothelial growth factor (VEGF) have emerged as a beneficial part of the therapeutic armamentarium for this condition, highlighting the utility of identifying and targeting specific pathogenic molecules. There continues to be active research into the molecular players regulating retinal angiogenesis, including pro-angiogenic factors, anti-angiogenic factors, and integrins and matrix proteinases. New insights have been especially prominent regarding molecules which regulate specialized endothelial cells called tip cells, which play a lead role in endothelial sprouting. Together, these research efforts are uncovering new, important molecular regulators of retinal angiogenesis, which provide fertile areas for therapeutic exploration. This review discusses potential molecular targets, with an emphasis towards newer targets.
Literatur
1.
Zurück zum Zitat Fong DS, Aiello LP, Ferris 3rd FL, Klein R. Diabetic retinopathy. Diabetes Care. 2004;27:2540–53.PubMedCrossRef Fong DS, Aiello LP, Ferris 3rd FL, Klein R. Diabetic retinopathy. Diabetes Care. 2004;27:2540–53.PubMedCrossRef
2.
Zurück zum Zitat Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122:552–63.PubMedCrossRef Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122:552–63.PubMedCrossRef
3.
4.
Zurück zum Zitat • Salam A, Mathew R, Sivaprasad S. Treatment of proliferative diabetic retinopathy with anti-VEGF agents. Acta Ophthalmol. 2011;89:405–11. This paper reviews anti-VEGF therapy specifically for proliferative diabetic retinopathy, including potential adverse effects.PubMedCrossRef • Salam A, Mathew R, Sivaprasad S. Treatment of proliferative diabetic retinopathy with anti-VEGF agents. Acta Ophthalmol. 2011;89:405–11. This paper reviews anti-VEGF therapy specifically for proliferative diabetic retinopathy, including potential adverse effects.PubMedCrossRef
5.
Zurück zum Zitat Adamis AP, Altaweel M, Bressler NM, Cunningham Jr ET, Davis MD, et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology. 2006;113:23–8.PubMedCrossRef Adamis AP, Altaweel M, Bressler NM, Cunningham Jr ET, Davis MD, et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology. 2006;113:23–8.PubMedCrossRef
6.
Zurück zum Zitat Giuliari GP, Guel DA, Cortez MA, Cortez RT. Selective and pan-blockade agents in the anti-angiogenic treatment of proliferative diabetic retinopathy: a literature summary. Can J Ophthalmol. 2010;45:501–8.PubMedCrossRef Giuliari GP, Guel DA, Cortez MA, Cortez RT. Selective and pan-blockade agents in the anti-angiogenic treatment of proliferative diabetic retinopathy: a literature summary. Can J Ophthalmol. 2010;45:501–8.PubMedCrossRef
7.
Zurück zum Zitat Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA. 2009;106:18751–6.PubMedCrossRef Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA. 2009;106:18751–6.PubMedCrossRef
8.
Zurück zum Zitat Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, et al. Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One. 2008;3:e3554.PubMedCrossRef Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, et al. Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One. 2008;3:e3554.PubMedCrossRef
9.
10.
Zurück zum Zitat Frystyk J. The growth hormone hypothesis—2005 revision. Horm Metab Res. 2005;37 Suppl 1:44–8.PubMedCrossRef Frystyk J. The growth hormone hypothesis—2005 revision. Horm Metab Res. 2005;37 Suppl 1:44–8.PubMedCrossRef
11.
Zurück zum Zitat Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, et al. Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol. 2004;165:457–69.PubMedCrossRef Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, et al. Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol. 2004;165:457–69.PubMedCrossRef
12.
Zurück zum Zitat Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science. 1997;276:1706–9.PubMedCrossRef Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science. 1997;276:1706–9.PubMedCrossRef
13.
Zurück zum Zitat Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, et al. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med. 1999;5:1390–5.PubMedCrossRef Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, et al. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med. 1999;5:1390–5.PubMedCrossRef
14.
Zurück zum Zitat Palii SS, Caballero Jr S, Shapiro G, Grant MB. Medical treatment of diabetic retinopathy with somatostatin analogues. Expert Opin Investig Drugs. 2007;16:73–82.PubMedCrossRef Palii SS, Caballero Jr S, Shapiro G, Grant MB. Medical treatment of diabetic retinopathy with somatostatin analogues. Expert Opin Investig Drugs. 2007;16:73–82.PubMedCrossRef
15.
Zurück zum Zitat Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17:347–62.PubMedCrossRef Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17:347–62.PubMedCrossRef
16.
Zurück zum Zitat Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.PubMedCrossRef Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.PubMedCrossRef
17.
Zurück zum Zitat Watanabe D, Suzuma K, Suzuma I, Ohashi H, Ojima T, et al. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2005;139:476–81.PubMedCrossRef Watanabe D, Suzuma K, Suzuma I, Ohashi H, Ojima T, et al. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2005;139:476–81.PubMedCrossRef
18.
Zurück zum Zitat Das A, Fanslow W, Cerretti D, Warren E, Talarico N, et al. Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab Invest. 2003;83:1637–45.PubMedCrossRef Das A, Fanslow W, Cerretti D, Warren E, Talarico N, et al. Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab Invest. 2003;83:1637–45.PubMedCrossRef
19.
Zurück zum Zitat Takagi H, Koyama S, Seike H, Oh H, Otani A, et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:393–402.PubMedCrossRef Takagi H, Koyama S, Seike H, Oh H, Otani A, et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:393–402.PubMedCrossRef
20.
Zurück zum Zitat Rennel ES, Regula JT, Harper SJ, Thomas M, Klein C, et al. A human neutralizing antibody specific to Ang-2 inhibits ocular angiogenesis. Microcirculation. 2011;18:598–607.PubMedCrossRef Rennel ES, Regula JT, Harper SJ, Thomas M, Klein C, et al. A human neutralizing antibody specific to Ang-2 inhibits ocular angiogenesis. Microcirculation. 2011;18:598–607.PubMedCrossRef
21.
Zurück zum Zitat Palmer GM, Tiran Z, Zhou Z, Capozzi ME, Park W, et al. A novel angiopoietin-derived peptide displays anti-angiogenic activity and inhibits tumour-induced and retinal neovascularization. Br J Pharmacol. 2012;165:1891–903.PubMedCrossRef Palmer GM, Tiran Z, Zhou Z, Capozzi ME, Park W, et al. A novel angiopoietin-derived peptide displays anti-angiogenic activity and inhibits tumour-induced and retinal neovascularization. Br J Pharmacol. 2012;165:1891–903.PubMedCrossRef
22.
Zurück zum Zitat Canton A, Burgos R, Hernandez C, Mateo C, Segura RM, et al. Hepatocyte growth factor in vitreous and serum from patients with proliferative diabetic retinopathy. Br J Ophthalmol. 2000;84:732–5.PubMedCrossRef Canton A, Burgos R, Hernandez C, Mateo C, Segura RM, et al. Hepatocyte growth factor in vitreous and serum from patients with proliferative diabetic retinopathy. Br J Ophthalmol. 2000;84:732–5.PubMedCrossRef
23.
Zurück zum Zitat Colombo ES, Menicucci G, McGuire PG, Das A. Hepatocyte growth factor/scatter factor promotes retinal angiogenesis through increased urokinase expression. Invest Ophthalmol Vis Sci. 2007;48:1793–800.PubMedCrossRef Colombo ES, Menicucci G, McGuire PG, Das A. Hepatocyte growth factor/scatter factor promotes retinal angiogenesis through increased urokinase expression. Invest Ophthalmol Vis Sci. 2007;48:1793–800.PubMedCrossRef
24.
Zurück zum Zitat Cai W, Rook SL, Jiang ZY, Takahara N, Aiello LP. Mechanisms of hepatocyte growth factor-induced retinal endothelial cell migration and growth. Invest Ophthalmol Vis Sci. 2000;41:1885–93.PubMed Cai W, Rook SL, Jiang ZY, Takahara N, Aiello LP. Mechanisms of hepatocyte growth factor-induced retinal endothelial cell migration and growth. Invest Ophthalmol Vis Sci. 2000;41:1885–93.PubMed
25.
Zurück zum Zitat Hernandez C, Carrasco E, Garcia-Arumi J, Maria Segura R, Simo R. Intravitreous levels of hepatocyte growth factor/scatter factor and vascular cell adhesion molecule-1 in the vitreous fluid of diabetic patients with proliferative retinopathy. Diabetes Metab. 2004;30:341–6.PubMedCrossRef Hernandez C, Carrasco E, Garcia-Arumi J, Maria Segura R, Simo R. Intravitreous levels of hepatocyte growth factor/scatter factor and vascular cell adhesion molecule-1 in the vitreous fluid of diabetic patients with proliferative retinopathy. Diabetes Metab. 2004;30:341–6.PubMedCrossRef
26.
Zurück zum Zitat Hernandez C, Simo R. Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy. Endocrine. 2012;41:220–6.PubMedCrossRef Hernandez C, Simo R. Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy. Endocrine. 2012;41:220–6.PubMedCrossRef
27.
Zurück zum Zitat Hernandez C, Fonollosa A, Garcia-Ramirez M, Higuera M, Catalan R, et al. Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care. 2006;29:2028–33.PubMedCrossRef Hernandez C, Fonollosa A, Garcia-Ramirez M, Higuera M, Catalan R, et al. Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care. 2006;29:2028–33.PubMedCrossRef
28.
Zurück zum Zitat Katsura Y, Okano T, Matsuno K, Osako M, Kure M, et al. Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care. 2005;28:2252–4.PubMedCrossRef Katsura Y, Okano T, Matsuno K, Osako M, Kure M, et al. Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care. 2005;28:2252–4.PubMedCrossRef
29.
Zurück zum Zitat Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med. 2005;353:782–92.PubMedCrossRef Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med. 2005;353:782–92.PubMedCrossRef
30.
Zurück zum Zitat Tong Z, Yang Z, Patel S, Chen H, Gibbs D, et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci USA. 2008;105:6998–7003.PubMedCrossRef Tong Z, Yang Z, Patel S, Chen H, Gibbs D, et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci USA. 2008;105:6998–7003.PubMedCrossRef
31.
Zurück zum Zitat Chen J, Connor KM, Aderman CM, Smith LE. Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest. 2008;118:526–33.PubMed Chen J, Connor KM, Aderman CM, Smith LE. Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest. 2008;118:526–33.PubMed
32.
Zurück zum Zitat Chen J, Connor KM, Aderman CM, Willett KL, Aspegren OP, et al. Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy. Invest Ophthalmol Vis Sci. 2009;50:1329–35.PubMedCrossRef Chen J, Connor KM, Aderman CM, Willett KL, Aspegren OP, et al. Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy. Invest Ophthalmol Vis Sci. 2009;50:1329–35.PubMedCrossRef
33.
Zurück zum Zitat Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci. 2008;49:732–42.PubMedCrossRef Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci. 2008;49:732–42.PubMedCrossRef
34.
Zurück zum Zitat Wang Q, Gorbey S, Pfister F, Hoger S, Dorn-Beineke A, et al. Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem. 2011;27:769–82.PubMedCrossRef Wang Q, Gorbey S, Pfister F, Hoger S, Dorn-Beineke A, et al. Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem. 2011;27:769–82.PubMedCrossRef
35.
Zurück zum Zitat McVicar CM, Hamilton R, Colhoun LM, Gardiner TA, Brines M, et al. Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes. 2011;60:2995–3005.PubMedCrossRef McVicar CM, Hamilton R, Colhoun LM, Gardiner TA, Brines M, et al. Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes. 2011;60:2995–3005.PubMedCrossRef
36.
Zurück zum Zitat Li W, Sinclair SH, Xu GT. Effects of intravitreal erythropoietin therapy for patients with chronic and progressive diabetic macular edema. Ophthalmic Surg Lasers Imaging. 2010;41:18–25.PubMedCrossRef Li W, Sinclair SH, Xu GT. Effects of intravitreal erythropoietin therapy for patients with chronic and progressive diabetic macular edema. Ophthalmic Surg Lasers Imaging. 2010;41:18–25.PubMedCrossRef
37.
Zurück zum Zitat Afzal A, Shaw LC, Ljubimov AV, Boulton ME, Segal MS, et al. Retinal and choroidal microangiopathies: therapeutic opportunities. Microvasc Res. 2007;74:131–44.PubMedCrossRef Afzal A, Shaw LC, Ljubimov AV, Boulton ME, Segal MS, et al. Retinal and choroidal microangiopathies: therapeutic opportunities. Microvasc Res. 2007;74:131–44.PubMedCrossRef
38.
Zurück zum Zitat Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest. 2005;115:86–93.PubMed Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest. 2005;115:86–93.PubMed
39.
Zurück zum Zitat Brooks Jr HL, Caballero Jr S, Newell CK, Steinmetz RL, Watson D, et al. Vitreous levels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol. 2004;122:1801–7.PubMedCrossRef Brooks Jr HL, Caballero Jr S, Newell CK, Steinmetz RL, Watson D, et al. Vitreous levels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol. 2004;122:1801–7.PubMedCrossRef
40.
Zurück zum Zitat Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, et al. The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J. 2007;21:3219–30.PubMedCrossRef Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, et al. The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J. 2007;21:3219–30.PubMedCrossRef
41.
42.
Zurück zum Zitat Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res. 2010;107:943–52.PubMedCrossRef Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res. 2010;107:943–52.PubMedCrossRef
43.
Zurück zum Zitat Zhang B, Abreu JG, Zhou K, Chen Y, Hu Y, et al. Blocking the Wnt pathway, a unifying mechanism for an angiogenic inhibitor in the serine proteinase inhibitor family. Proc Natl Acad Sci USA. 2010;107:6900–5.PubMedCrossRef Zhang B, Abreu JG, Zhou K, Chen Y, Hu Y, et al. Blocking the Wnt pathway, a unifying mechanism for an angiogenic inhibitor in the serine proteinase inhibitor family. Proc Natl Acad Sci USA. 2010;107:6900–5.PubMedCrossRef
44.
Zurück zum Zitat • Chen J, Stahl A, Krah NM, Seaward MR, Dennison RJ, et al. Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation. 2011;124:1871–81. This report demonstrates the importance of Wnt signaling in pathologic retinal angiogenesis, including studies of mice deficient in the Wnt coreceptor Lrp5 and the downstream signaling molecule dishevelled2.PubMedCrossRef • Chen J, Stahl A, Krah NM, Seaward MR, Dennison RJ, et al. Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation. 2011;124:1871–81. This report demonstrates the importance of Wnt signaling in pathologic retinal angiogenesis, including studies of mice deficient in the Wnt coreceptor Lrp5 and the downstream signaling molecule dishevelled2.PubMedCrossRef
45.
Zurück zum Zitat Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.PubMedCrossRef Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.PubMedCrossRef
46.
Zurück zum Zitat • Campochiaro PA. Gene transfer for ocular neovascularization and macular edema. Gene Ther. 2012;19:121–6. This review elucidates the strategy of gene transfer as a means for delivering anti-angiogenic molecules to the eye, and discusses candidate molecules for ocular diseases including diabetic retinopathy. This review elucidates the strategy of gene transfer as a means for delivering anti-angiogenic molecules to the eye, and discusses candidate molecules for ocular diseases including diabetic retinopathy.PubMedCrossRef • Campochiaro PA. Gene transfer for ocular neovascularization and macular edema. Gene Ther. 2012;19:121–6. This review elucidates the strategy of gene transfer as a means for delivering anti-angiogenic molecules to the eye, and discusses candidate molecules for ocular diseases including diabetic retinopathy. This review elucidates the strategy of gene transfer as a means for delivering anti-angiogenic molecules to the eye, and discusses candidate molecules for ocular diseases including diabetic retinopathy.PubMedCrossRef
47.
Zurück zum Zitat Farjo KM, Ma JX. The potential of nanomedicine therapies to treat neovascular disease in the retina. J Angiogenes Res. 2010;2:21.PubMedCrossRef Farjo KM, Ma JX. The potential of nanomedicine therapies to treat neovascular disease in the retina. J Angiogenes Res. 2010;2:21.PubMedCrossRef
48.
Zurück zum Zitat Zhang SX, Ma JX. Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res. 2007;26:1–37.PubMedCrossRef Zhang SX, Ma JX. Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res. 2007;26:1–37.PubMedCrossRef
49.
Zurück zum Zitat Zhang SX, Wang JJ, Gao G, Shao C, Mott R, et al. Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J. 2006;20:323–5.PubMed Zhang SX, Wang JJ, Gao G, Shao C, Mott R, et al. Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J. 2006;20:323–5.PubMed
50.
Zurück zum Zitat Gao G, Li Y, Fant J, Crosson CE, Becerra SP, et al. Difference in ischemic regulation of vascular endothelial growth factor and pigment epithelium–derived factor in brown norway and sprague dawley rats contributing to different susceptibilities to retinal neovascularization. Diabetes. 2002;51:1218–25.PubMedCrossRef Gao G, Li Y, Fant J, Crosson CE, Becerra SP, et al. Difference in ischemic regulation of vascular endothelial growth factor and pigment epithelium–derived factor in brown norway and sprague dawley rats contributing to different susceptibilities to retinal neovascularization. Diabetes. 2002;51:1218–25.PubMedCrossRef
51.
Zurück zum Zitat Noma H, Funatsu H, Yamashita H, Kitano S, Mishima HK, et al. Regulation of angiogenesis in diabetic retinopathy: possible balance between vascular endothelial growth factor and endostatin. Arch Ophthalmol. 2002;120:1075–80.PubMedCrossRef Noma H, Funatsu H, Yamashita H, Kitano S, Mishima HK, et al. Regulation of angiogenesis in diabetic retinopathy: possible balance between vascular endothelial growth factor and endostatin. Arch Ophthalmol. 2002;120:1075–80.PubMedCrossRef
52.
Zurück zum Zitat Spranger J, Hammes HP, Preissner KT, Schatz H, Pfeiffer AF. Release of the angiogenesis inhibitor angiostatin in patients with proliferative diabetic retinopathy: association with retinal photocoagulation. Diabetologia. 2000;43:1404–7.PubMedCrossRef Spranger J, Hammes HP, Preissner KT, Schatz H, Pfeiffer AF. Release of the angiogenesis inhibitor angiostatin in patients with proliferative diabetic retinopathy: association with retinal photocoagulation. Diabetologia. 2000;43:1404–7.PubMedCrossRef
53.
Zurück zum Zitat Wang Y, Wang S, Sheibani N. Enhanced proangiogenic signaling in thrombospondin-1-deficient retinal endothelial cells. Microvasc Res. 2006;71:143–51.PubMedCrossRef Wang Y, Wang S, Sheibani N. Enhanced proangiogenic signaling in thrombospondin-1-deficient retinal endothelial cells. Microvasc Res. 2006;71:143–51.PubMedCrossRef
54.
Zurück zum Zitat Wang S, Wu Z, Sorenson CM, Lawler J, Sheibani N. Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn. 2003;228:630–42.PubMedCrossRef Wang S, Wu Z, Sorenson CM, Lawler J, Sheibani N. Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn. 2003;228:630–42.PubMedCrossRef
55.
Zurück zum Zitat Wu Z, Wang S, Sorenson CM, Sheibani N. Attenuation of retinal vascular development and neovascularization in transgenic mice over-expressing thrombospondin-1 in the lens. Dev Dyn. 2006;235:1908–20.PubMedCrossRef Wu Z, Wang S, Sorenson CM, Sheibani N. Attenuation of retinal vascular development and neovascularization in transgenic mice over-expressing thrombospondin-1 in the lens. Dev Dyn. 2006;235:1908–20.PubMedCrossRef
56.
Zurück zum Zitat Sato Y (2012) The vasohibin family: Novel regulators of angiogenesis. Vascul Pharmacol. Sato Y (2012) The vasohibin family: Novel regulators of angiogenesis. Vascul Pharmacol.
57.
Zurück zum Zitat Sato H, Abe T, Wakusawa R, Asai N, Kunikata H, et al. Vitreous levels of vasohibin-1 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Diabetologia. 2009;52:359–61.PubMedCrossRef Sato H, Abe T, Wakusawa R, Asai N, Kunikata H, et al. Vitreous levels of vasohibin-1 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Diabetologia. 2009;52:359–61.PubMedCrossRef
58.
Zurück zum Zitat Shen J, Yang X, Xiao WH, Hackett SF, Sato Y, et al. Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J. 2006;20:723–5.PubMed Shen J, Yang X, Xiao WH, Hackett SF, Sato Y, et al. Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J. 2006;20:723–5.PubMed
59.
Zurück zum Zitat Campochiaro PA. Molecular targets for retinal vascular diseases. J Cell Physiol. 2007;210:575–81.PubMedCrossRef Campochiaro PA. Molecular targets for retinal vascular diseases. J Cell Physiol. 2007;210:575–81.PubMedCrossRef
60.
Zurück zum Zitat Friedlander M, Theesfeld CL, Sugita M, Fruttiger M, Thomas MA, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA. 1996;93:9764–9.PubMedCrossRef Friedlander M, Theesfeld CL, Sugita M, Fruttiger M, Thomas MA, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA. 1996;93:9764–9.PubMedCrossRef
61.
Zurück zum Zitat Das A, Boyd N, Jones TR, Talarico N, McGuire PG. Inhibition of choroidal neovascularization by a peptide inhibitor of the urokinase plasminogen activator and receptor system in a mouse model. Arch Ophthalmol. 2004;122:1844–9.PubMedCrossRef Das A, Boyd N, Jones TR, Talarico N, McGuire PG. Inhibition of choroidal neovascularization by a peptide inhibitor of the urokinase plasminogen activator and receptor system in a mouse model. Arch Ophthalmol. 2004;122:1844–9.PubMedCrossRef
62.
Zurück zum Zitat Kowluru RA, Zhong Q, Santos JM (2012) Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opin Investig Drugs. Kowluru RA, Zhong Q, Santos JM (2012) Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opin Investig Drugs.
63.
Zurück zum Zitat Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33.PubMedCrossRef Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33.PubMedCrossRef
64.
Zurück zum Zitat Das A, McLamore A, Song W, McGuire PG. Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch Ophthalmol. 1999;117:498–503.PubMedCrossRef Das A, McLamore A, Song W, McGuire PG. Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch Ophthalmol. 1999;117:498–503.PubMedCrossRef
65.
Zurück zum Zitat Barnett JM, McCollum GW, Fowler JA, Duan JJ, Kay JD, et al. Pharmacologic and genetic manipulation of MMP-2 and −9 affects retinal neovascularization in rodent models of OIR. Invest Ophthalmol Vis Sci. 2007;48:907–15.PubMedCrossRef Barnett JM, McCollum GW, Fowler JA, Duan JJ, Kay JD, et al. Pharmacologic and genetic manipulation of MMP-2 and −9 affects retinal neovascularization in rodent models of OIR. Invest Ophthalmol Vis Sci. 2007;48:907–15.PubMedCrossRef
66.
Zurück zum Zitat McGuire PG, Jones TR, Talarico N, Warren E, Das A. The urokinase/urokinase receptor system in retinal neovascularization: inhibition by A6 suggests a new therapeutic target. Invest Ophthalmol Vis Sci. 2003;44:2736–42.PubMedCrossRef McGuire PG, Jones TR, Talarico N, Warren E, Das A. The urokinase/urokinase receptor system in retinal neovascularization: inhibition by A6 suggests a new therapeutic target. Invest Ophthalmol Vis Sci. 2003;44:2736–42.PubMedCrossRef
67.
Zurück zum Zitat Le Gat L, Gogat K, Bouquet C, Saint-Geniez M, Darland D, et al. In vivo adenovirus-mediated delivery of a uPA/uPAR antagonist reduces retinal neovascularization in a mouse model of retinopathy. Gene Ther. 2003;10:2098–103.PubMedCrossRef Le Gat L, Gogat K, Bouquet C, Saint-Geniez M, Darland D, et al. In vivo adenovirus-mediated delivery of a uPA/uPAR antagonist reduces retinal neovascularization in a mouse model of retinopathy. Gene Ther. 2003;10:2098–103.PubMedCrossRef
68.
Zurück zum Zitat Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161:1163–77.PubMedCrossRef Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161:1163–77.PubMedCrossRef
69.
Zurück zum Zitat • Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22:617–25. This review describes endothelial tip and stalk cells, their role in sprouting angiogenesis, and the molecules that regulate their behavior.PubMedCrossRef • Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22:617–25. This review describes endothelial tip and stalk cells, their role in sprouting angiogenesis, and the molecules that regulate their behavior.PubMedCrossRef
70.
Zurück zum Zitat • Benedito R, Roca C, Sorensen I, Adams S, Gossler A, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137:1124–35. This report describes two key Notch receptor ligands, Dll4 and Jagged1, and their antagonistic role in regulating endothelial tip cell formation and sprouting.PubMedCrossRef • Benedito R, Roca C, Sorensen I, Adams S, Gossler A, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137:1124–35. This report describes two key Notch receptor ligands, Dll4 and Jagged1, and their antagonistic role in regulating endothelial tip cell formation and sprouting.PubMedCrossRef
71.
Zurück zum Zitat Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445:776–80.PubMedCrossRef Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445:776–80.PubMedCrossRef
72.
Zurück zum Zitat Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 2007;104:3219–24.PubMedCrossRef Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 2007;104:3219–24.PubMedCrossRef
73.
Zurück zum Zitat Dou GR, Wang L, Wang YS, Han H. Notch signaling in ocular vasculature development and diseases. Mol Med. 2012;18:47–55.PubMedCrossRef Dou GR, Wang L, Wang YS, Han H. Notch signaling in ocular vasculature development and diseases. Mol Med. 2012;18:47–55.PubMedCrossRef
74.
Zurück zum Zitat Zheng M, Zhang Z, Zhao X, Ding Y, Han H. The Notch signaling pathway in retinal dysplasia and retina vascular homeostasis. J Genet Genomics. 2010;37:573–82.PubMedCrossRef Zheng M, Zhang Z, Zhao X, Ding Y, Han H. The Notch signaling pathway in retinal dysplasia and retina vascular homeostasis. J Genet Genomics. 2010;37:573–82.PubMedCrossRef
75.
Zurück zum Zitat Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol. 2010;2:a001875.PubMedCrossRef Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol. 2010;2:a001875.PubMedCrossRef
76.
Zurück zum Zitat • Joyal JS, Sitaras N, Binet F, Rivera JC, Stahl A, et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood. 2011;117:6024–35. This report describes the vaso-repulsive effects of semaphorin 3A in ischemic retina which directs newly growing vessels away from the retina toward the vitreous.PubMedCrossRef • Joyal JS, Sitaras N, Binet F, Rivera JC, Stahl A, et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood. 2011;117:6024–35. This report describes the vaso-repulsive effects of semaphorin 3A in ischemic retina which directs newly growing vessels away from the retina toward the vitreous.PubMedCrossRef
77.
Zurück zum Zitat • Fukushima Y, Okada M, Kataoka H, Hirashima M, Yoshida Y, et al. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest. 2011;121:1974–85. This report describes a vaso-repulsive role for semaphorin 3E in the retina and its consequences for new vessel formation in the retina under pathologic circumstances.PubMedCrossRef • Fukushima Y, Okada M, Kataoka H, Hirashima M, Yoshida Y, et al. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest. 2011;121:1974–85. This report describes a vaso-repulsive role for semaphorin 3E in the retina and its consequences for new vessel formation in the retina under pathologic circumstances.PubMedCrossRef
78.
Zurück zum Zitat Jones CA, London NR, Chen H, Park KW, Sauvaget D, et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med. 2008;14:448–53.PubMedCrossRef Jones CA, London NR, Chen H, Park KW, Sauvaget D, et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med. 2008;14:448–53.PubMedCrossRef
79.
Zurück zum Zitat • London NR, Li DY. Robo4-dependent slit signaling stabilizes the vasculature during pathologic angiogenesis and cytokine storm. Curr Opin Hematol. 2011;18:186–90. This review describes Robo-dependent Slit signaling in stabilizing the vasculature and inhibiting pathologic angiogenesis.PubMedCrossRef • London NR, Li DY. Robo4-dependent slit signaling stabilizes the vasculature during pathologic angiogenesis and cytokine storm. Curr Opin Hematol. 2011;18:186–90. This review describes Robo-dependent Slit signaling in stabilizing the vasculature and inhibiting pathologic angiogenesis.PubMedCrossRef
Metadaten
Titel
Novel Targets Against Retinal Angiogenesis in Diabetic Retinopathy
verfasst von
Shuang Wang
James K. Park
Elia J. Duh
Publikationsdatum
01.08.2012
Verlag
Current Science Inc.
Erschienen in
Current Diabetes Reports / Ausgabe 4/2012
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-012-0289-0

Weitere Artikel der Ausgabe 4/2012

Current Diabetes Reports 4/2012 Zur Ausgabe

Microvascular Complications—Nephropathy (B Roshan, Section Editor)

Anti-Fibrosis Therapy and Diabetic Nephropathy

Microvascular Complications—Retinopathy (JK Sun, Section Editor)

Neuroprotection in Diabetic Retinopathy

Microvascular Complications—Neuropathy (D Ziegler, Section Editor)

Small Fiber Neuropathy: Is Skin Biopsy the Holy Grail?

Microvascular Complications—Neuropathy (D Ziegler, Section Editor)

Management of Painful Diabetic Neuropathy: Guideline Guidance or Jungle?

Microvascular Complications—Retinopathy (JK Sun, Section Editor)

Screening for Diabetic Retinopathy and Diabetic Macular Edema in the United Kingdom

Microvascular Complications—Retinopathy (JK Sun, Section Editor)

Current Epidemiology of Diabetic Retinopathy and Diabetic Macular Edema

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.