Skip to main content
Erschienen in: Current Diabetes Reports 6/2013

01.12.2013 | Genetics (TM Frayling, Section Editor)

What the Genetics of Lipodystrophy Can Teach Us About Insulin Resistance and Diabetes

verfasst von: Camille Vatier, Guillaume Bidault, Nolwenn Briand, Anne-Claire Guénantin, Laurence Teyssières, Olivier Lascols, Jacqueline Capeau, Corinne Vigouroux

Erschienen in: Current Diabetes Reports | Ausgabe 6/2013

Einloggen, um Zugang zu erhalten

Abstract

Genetic lipodystrophic syndromes are rare diseases characterized by generalized or partial fat atrophy (lipoatrophy) associated with severe metabolic complications such as insulin resistance (IR), diabetes, dyslipidemia, nonalcoholic fatty liver disease, and ovarian hyperandrogenism. During the last 15 years, mutations in several genes have been shown to be responsible for monogenic forms of lipodystrophic syndromes, of autosomal dominant or recessive transmission. Although the molecular basis of lipodystrophies is heterogeneous, most mutated genes lead to impaired adipogenesis, adipocyte lipid storage, and/or formation or maintenance of the adipocyte lipid droplet (LD), showing that primary alterations of adipose tissue (AT) can result in severe systemic metabolic and endocrine consequences. The reduced expandability of AT alters its ability to buffer excess caloric intake, leading to ectopic lipid storage that impairs insulin signaling and other cellular functions (“lipotoxicity”). Genetic studies have also pointed out the close relationships between ageing, inflammatory processes, lipodystrophy, and IR.
Literatur
1.
Zurück zum Zitat Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96:3313–25.PubMedCrossRef Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96:3313–25.PubMedCrossRef
2.
Zurück zum Zitat Vigouroux C, Caron-Debarle M, Le Dour C, Magré J, Capeau J. Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol. 2011;43:862–76.PubMedCrossRef Vigouroux C, Caron-Debarle M, Le Dour C, Magré J, Capeau J. Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol. 2011;43:862–76.PubMedCrossRef
3.
Zurück zum Zitat Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402:880–3.PubMed Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402:880–3.PubMed
4.
Zurück zum Zitat Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9:109–12.PubMedCrossRef Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9:109–12.PubMedCrossRef
5.
Zurück zum Zitat Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24:153–6.PubMedCrossRef Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24:153–6.PubMedCrossRef
6.
Zurück zum Zitat Magré J, Delépine M, Khallouf E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nature Genet. 2001;28:365–70.PubMedCrossRef Magré J, Delépine M, Khallouf E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nature Genet. 2001;28:365–70.PubMedCrossRef
7.
Zurück zum Zitat Agarwal AK, Arioglu E, De Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31:21–3.PubMedCrossRef Agarwal AK, Arioglu E, De Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31:21–3.PubMedCrossRef
8.
Zurück zum Zitat George S, Rochford JJ, Wolfrum C, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304:1325–8.PubMedCrossRef George S, Rochford JJ, Wolfrum C, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304:1325–8.PubMedCrossRef
9.
Zurück zum Zitat Kim C, Delépine M, Boutet E, et al. Association of a homozygous nonsense Caveolin-1 mutation with Berardinelli-Seip Congenital Lipodystrophy. J Clin Endocrinol Metab. 2008;93:1129–34.PubMedCrossRef Kim C, Delépine M, Boutet E, et al. Association of a homozygous nonsense Caveolin-1 mutation with Berardinelli-Seip Congenital Lipodystrophy. J Clin Endocrinol Metab. 2008;93:1129–34.PubMedCrossRef
10.
Zurück zum Zitat Rubio-Cabezas O, Puri V, Murano I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1:280–7.PubMedCrossRef Rubio-Cabezas O, Puri V, Murano I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1:280–7.PubMedCrossRef
11.
Zurück zum Zitat Hayashi YK, Matsuda C, Ogawa M, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119:2623–33.PubMedCrossRef Hayashi YK, Matsuda C, Ogawa M, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119:2623–33.PubMedCrossRef
12.
Zurück zum Zitat •• Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364:740–8. Each of these studies (references 3–12) identified genes involved in lipodystrophic syndromes, underlying the importance of a primary defect in adipose tissue for metabolism at the systemic level.PubMedCrossRef •• Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364:740–8. Each of these studies (references 3–12) identified genes involved in lipodystrophic syndromes, underlying the importance of a primary defect in adipose tissue for metabolism at the systemic level.PubMedCrossRef
13.
Zurück zum Zitat Novelli G, Muchir A, Sangiuolo F, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet. 2002;71:426–31.PubMedCrossRef Novelli G, Muchir A, Sangiuolo F, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet. 2002;71:426–31.PubMedCrossRef
14.
Zurück zum Zitat De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin A truncation in Hutchinson-Gilford progeria. Science. 2003;300:2055.PubMedCrossRef De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin A truncation in Hutchinson-Gilford progeria. Science. 2003;300:2055.PubMedCrossRef
15.
Zurück zum Zitat Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423:293–8.PubMedCrossRef Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423:293–8.PubMedCrossRef
16.
Zurück zum Zitat Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12:1995–2001.PubMedCrossRef Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12:1995–2001.PubMedCrossRef
17.
Zurück zum Zitat Caron M, Auclair M, Donadille B, et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress, and premature cellular senescence. Cell Death Differ. 2007;14:1759–67.PubMedCrossRef Caron M, Auclair M, Donadille B, et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress, and premature cellular senescence. Cell Death Differ. 2007;14:1759–67.PubMedCrossRef
18.
Zurück zum Zitat •• Agarwal AK, Xing C, DeMartino GN, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87:866–72. This work reported the identification of PSMB8 as the gene involved in JMP syndrome, showing that autoinflammation can lead to lipodystrophy.PubMedCrossRef •• Agarwal AK, Xing C, DeMartino GN, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87:866–72. This work reported the identification of PSMB8 as the gene involved in JMP syndrome, showing that autoinflammation can lead to lipodystrophy.PubMedCrossRef
19.
Zurück zum Zitat Kitamura A, Maekawa Y, Uehara H, et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest. 2011;121:4150–60.PubMedCrossRef Kitamura A, Maekawa Y, Uehara H, et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest. 2011;121:4150–60.PubMedCrossRef
20.
Zurück zum Zitat Ailhaud G. Adipose tissue as an endocrine organ. Int J Obes Relat Metab Disord. 2000;24 Suppl 2:S1–3.PubMedCrossRef Ailhaud G. Adipose tissue as an endocrine organ. Int J Obes Relat Metab Disord. 2000;24 Suppl 2:S1–3.PubMedCrossRef
21.
Zurück zum Zitat Bastard JP, Fève B. The secretory face of the adipose cell: a tribute to two queens, leptin and adiponectin. Biochimie. 2012;94:2063–4.PubMedCrossRef Bastard JP, Fève B. The secretory face of the adipose cell: a tribute to two queens, leptin and adiponectin. Biochimie. 2012;94:2063–4.PubMedCrossRef
22.
Zurück zum Zitat Goossens GH, Blaak EE, van Baak MA. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. Obes Rev. 2003;4:43–55.PubMedCrossRef Goossens GH, Blaak EE, van Baak MA. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. Obes Rev. 2003;4:43–55.PubMedCrossRef
23.
Zurück zum Zitat Caspar-Bauguil S, Cousin B, Bour S, et al. Adipose tissue lymphocytes: types and roles. J Physiol Biochem. 2009;65:423–36.PubMedCrossRef Caspar-Bauguil S, Cousin B, Bour S, et al. Adipose tissue lymphocytes: types and roles. J Physiol Biochem. 2009;65:423–36.PubMedCrossRef
24.
Zurück zum Zitat Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–65.PubMedCrossRef Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–65.PubMedCrossRef
25.
Zurück zum Zitat Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998;12:3182–94.PubMedCrossRef Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998;12:3182–94.PubMedCrossRef
26.
Zurück zum Zitat Moitra J, Mason MM, Olive M, et al. Life without white fat: a transgenic mouse. Genes Dev. 1998;12:3168–81.PubMedCrossRef Moitra J, Mason MM, Olive M, et al. Life without white fat: a transgenic mouse. Genes Dev. 1998;12:3168–81.PubMedCrossRef
27.
Zurück zum Zitat Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105:271–8.PubMedCrossRef Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105:271–8.PubMedCrossRef
28.
Zurück zum Zitat Colombo C, Cutson JJ, Yamauchi T, et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes. 2002;51:2727–33.PubMedCrossRef Colombo C, Cutson JJ, Yamauchi T, et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes. 2002;51:2727–33.PubMedCrossRef
29.
Zurück zum Zitat Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401:73–6.PubMedCrossRef Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401:73–6.PubMedCrossRef
30.
31.
Zurück zum Zitat Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl. 1996;413:2–28.PubMedCrossRef Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl. 1996;413:2–28.PubMedCrossRef
32.
Zurück zum Zitat Dunnigan MG, Cochrane MA, Kelly A, Scott JW. Familial lipoatrophic diabetes with dominant transmission. A new syndrome. Q J Med. 1974;43:33–48.PubMed Dunnigan MG, Cochrane MA, Kelly A, Scott JW. Familial lipoatrophic diabetes with dominant transmission. A new syndrome. Q J Med. 1974;43:33–48.PubMed
33.
Zurück zum Zitat Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 1999;84:170–4.PubMedCrossRef Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 1999;84:170–4.PubMedCrossRef
34.
Zurück zum Zitat Vantyghem MC, Vincent-Desplanques D, Defrance-Faivre F, et al. Fertility and obstetrical complications in women with LMNA-related familial partial lipodystrophy. J Clin Endocrinol Metab. 2008;96:2223–9.CrossRef Vantyghem MC, Vincent-Desplanques D, Defrance-Faivre F, et al. Fertility and obstetrical complications in women with LMNA-related familial partial lipodystrophy. J Clin Endocrinol Metab. 2008;96:2223–9.CrossRef
35.
Zurück zum Zitat Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87:2395–8.PubMedCrossRef Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87:2395–8.PubMedCrossRef
36.
Zurück zum Zitat Antuna-Puente B, Boutet E, Vigouroux C, et al. Higher adiponectin levels in patients with Berardinelli-Seip congenital lipodystrophy due to seipin compared with 1-acylglycerol-3-phosphate-o-acyltransferase-2 deficiency. J Clin Endocrinol Metab. 2010;95:1463–8.PubMedCrossRef Antuna-Puente B, Boutet E, Vigouroux C, et al. Higher adiponectin levels in patients with Berardinelli-Seip congenital lipodystrophy due to seipin compared with 1-acylglycerol-3-phosphate-o-acyltransferase-2 deficiency. J Clin Endocrinol Metab. 2010;95:1463–8.PubMedCrossRef
37.
Zurück zum Zitat Valerio CM, Godoy-Matos A, Moreira RO, et al. Dual-energy X-ray absorptiometry study of body composition in patients with lipodystrophy. Diabetes Care. 2007;30:1857–9.PubMedCrossRef Valerio CM, Godoy-Matos A, Moreira RO, et al. Dual-energy X-ray absorptiometry study of body composition in patients with lipodystrophy. Diabetes Care. 2007;30:1857–9.PubMedCrossRef
38.
Zurück zum Zitat Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res. 1994;35:1490–6.PubMed Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res. 1994;35:1490–6.PubMed
39.
Zurück zum Zitat Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69:501–16.PubMedCrossRef Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69:501–16.PubMedCrossRef
40.
Zurück zum Zitat Decaudain A, Vantyghem MC, Guerci B, et al. New metabolic phenotypes in laminopathies: LMNA mutations in patients with severe metabolic syndrome. J Clin Endocrinol Metab. 2007;92:4835–44.PubMedCrossRef Decaudain A, Vantyghem MC, Guerci B, et al. New metabolic phenotypes in laminopathies: LMNA mutations in patients with severe metabolic syndrome. J Clin Endocrinol Metab. 2007;92:4835–44.PubMedCrossRef
41.
Zurück zum Zitat Semple RK, Savage DB, Cochran EK, Gorden P, O’Rahilly S. Genetic syndromes of severe insulin resistance. Endocr Rev. 2011;32:498–514.PubMedCrossRef Semple RK, Savage DB, Cochran EK, Gorden P, O’Rahilly S. Genetic syndromes of severe insulin resistance. Endocr Rev. 2011;32:498–514.PubMedCrossRef
42.
Zurück zum Zitat Semple RK, Sleigh A, Murgatroyd PR, et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest. 2009;119:315–22.PubMed Semple RK, Sleigh A, Murgatroyd PR, et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest. 2009;119:315–22.PubMed
43.
Zurück zum Zitat Thauvin-Robinet C, Auclair M, Duplomb L, et al. Mutations in PIK3R1 cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet. 2013;93:141–9.PubMedCrossRef Thauvin-Robinet C, Auclair M, Duplomb L, et al. Mutations in PIK3R1 cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet. 2013;93:141–9.PubMedCrossRef
44.
Zurück zum Zitat Van Maldergem L, Magré J, Gedde-Dahl Jr T, et al. Genotype-phenotype relationships in berardinelli-seip congenital lipodystrophy. J Med Genet. 2002;39:722–33.PubMedCrossRef Van Maldergem L, Magré J, Gedde-Dahl Jr T, et al. Genotype-phenotype relationships in berardinelli-seip congenital lipodystrophy. J Med Genet. 2002;39:722–33.PubMedCrossRef
45.
Zurück zum Zitat Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or Seipin genes. J Clin Endocrinol Metab. 2003;88:5433–7.PubMedCrossRef Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or Seipin genes. J Clin Endocrinol Metab. 2003;88:5433–7.PubMedCrossRef
46.
Zurück zum Zitat • Agarwal AK. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr Opin Lipidol. 2012;23:290–302. A comprehensive review about the role of AGPAT isoforms.PubMedCrossRef • Agarwal AK. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr Opin Lipidol. 2012;23:290–302. A comprehensive review about the role of AGPAT isoforms.PubMedCrossRef
47.
Zurück zum Zitat Subauste AR, Das AK, Li X, et al. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes. 2012;61:2922–31.PubMedCrossRef Subauste AR, Das AK, Li X, et al. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes. 2012;61:2922–31.PubMedCrossRef
48.
Zurück zum Zitat • Cartwright BR, Goodman JM. Seipin: from human disease to molecular mechanism. J Lipid Res. 2012;53:1042–55. A recent complete review on the role of seipin, in particular in lipid droplet assembly and maintenance and in adipocyte differentiation.PubMedCrossRef • Cartwright BR, Goodman JM. Seipin: from human disease to molecular mechanism. J Lipid Res. 2012;53:1042–55. A recent complete review on the role of seipin, in particular in lipid droplet assembly and maintenance and in adipocyte differentiation.PubMedCrossRef
49.
Zurück zum Zitat Szymanski KM, Binns D, Bartz R, et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci U S A. 2007;104:20890–5.PubMedCrossRef Szymanski KM, Binns D, Bartz R, et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci U S A. 2007;104:20890–5.PubMedCrossRef
50.
Zurück zum Zitat Boutet E, El Mourabit H, Prot M, et al. Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie. 2009;91:796–803.PubMedCrossRef Boutet E, El Mourabit H, Prot M, et al. Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie. 2009;91:796–803.PubMedCrossRef
51.
Zurück zum Zitat • Yang H, Galea A, Sytnyk V, Crossley M. Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol. 2012;24:509–16. A comprehensive review about the structure of lipid droplets and the mechanisms involved in their assembly and growth.PubMedCrossRef • Yang H, Galea A, Sytnyk V, Crossley M. Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol. 2012;24:509–16. A comprehensive review about the structure of lipid droplets and the mechanisms involved in their assembly and growth.PubMedCrossRef
52.
Zurück zum Zitat Ito D, Suzuki N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain. 2009;132:8–15.PubMedCrossRef Ito D, Suzuki N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain. 2009;132:8–15.PubMedCrossRef
53.
Zurück zum Zitat Holtta-Vuori M, Salo VT, Ohsaki Y, Suster ML, Ikonen E. Alleviation of seipinopathy-related ER stress by triglyceride storage. Hum Mol Genet. 2013;22:1157–66.PubMedCrossRef Holtta-Vuori M, Salo VT, Ohsaki Y, Suster ML, Ikonen E. Alleviation of seipinopathy-related ER stress by triglyceride storage. Hum Mol Genet. 2013;22:1157–66.PubMedCrossRef
54.
Zurück zum Zitat Cao H, Alston L, Ruschman J, Hegele RA. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3.PubMedCrossRef Cao H, Alston L, Ruschman J, Hegele RA. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3.PubMedCrossRef
55.
Zurück zum Zitat Ostermeyer AG, Paci JM, Zeng Y, et al. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol. 2001;152:1071–8.PubMedCrossRef Ostermeyer AG, Paci JM, Zeng Y, et al. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol. 2001;152:1071–8.PubMedCrossRef
56.
Zurück zum Zitat Pol A, Luetterforst R, Lindsay M, et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol. 2001;152:1057–70.PubMedCrossRef Pol A, Luetterforst R, Lindsay M, et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol. 2001;152:1057–70.PubMedCrossRef
57.
Zurück zum Zitat • Le Lay S, Briand N, Blouin CM, et al. The lipoatrophic caveolin-1 deficient mouse model reveals autophagy in mature adipocytes. Autophagy. 2010;6:754–63. Autophagy, a new pathway involved in lipodystrophy in caveolin-1 deficient mice.PubMedCrossRef • Le Lay S, Briand N, Blouin CM, et al. The lipoatrophic caveolin-1 deficient mouse model reveals autophagy in mature adipocytes. Autophagy. 2010;6:754–63. Autophagy, a new pathway involved in lipodystrophy in caveolin-1 deficient mice.PubMedCrossRef
58.
Zurück zum Zitat Blouin CM, Le Lay S, Eberl A, et al. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res. 2010;51:945–56.PubMedCrossRef Blouin CM, Le Lay S, Eberl A, et al. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res. 2010;51:945–56.PubMedCrossRef
59.
Zurück zum Zitat Rajab A, Straub V, McCann LJ, et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 2010;6:e1000874.PubMedCrossRef Rajab A, Straub V, McCann LJ, et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 2010;6:e1000874.PubMedCrossRef
60.
Zurück zum Zitat Hill MM, Bastiani M, Luetterforst R, et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008;132:113–24.PubMedCrossRef Hill MM, Bastiani M, Luetterforst R, et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008;132:113–24.PubMedCrossRef
61.
Zurück zum Zitat Le Dour C, Schneebeli S, Bakiri F, et al. A homozygous mutation of prelamin-A preventing its farnesylation and maturation leads to a severe lipodystrophic phenotype: new insights into the pathogenicity of nonfarnesylated prelamin-A. J Clin Endocrinol Metab. 2011;96:E856–62.PubMedCrossRef Le Dour C, Schneebeli S, Bakiri F, et al. A homozygous mutation of prelamin-A preventing its farnesylation and maturation leads to a severe lipodystrophic phenotype: new insights into the pathogenicity of nonfarnesylated prelamin-A. J Clin Endocrinol Metab. 2011;96:E856–62.PubMedCrossRef
62.
Zurück zum Zitat Wiltshire KM, Hegele RA, Innes AM, Brownell AK. Homozygous lamin A/C familial lipodystrophy R482Q mutation in autosomal recessive Emery Dreifuss muscular dystrophy. Neuromuscul Disord. 2013;23:265–8.PubMedCrossRef Wiltshire KM, Hegele RA, Innes AM, Brownell AK. Homozygous lamin A/C familial lipodystrophy R482Q mutation in autosomal recessive Emery Dreifuss muscular dystrophy. Neuromuscul Disord. 2013;23:265–8.PubMedCrossRef
64.
Zurück zum Zitat Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol. 2013;14:13–24.PubMedCrossRef Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol. 2013;14:13–24.PubMedCrossRef
65.
Zurück zum Zitat Vigouroux C, Magré J, Vantyghem MC, et al. Lamin A/C gene: sex-determined expression of mutations in Dunnigan-type familial partial lipodystrophy and absence of coding mutations in congenital and acquired generalized lipoatrophy. Diabetes. 2000;49:1958–62.PubMedCrossRef Vigouroux C, Magré J, Vantyghem MC, et al. Lamin A/C gene: sex-determined expression of mutations in Dunnigan-type familial partial lipodystrophy and absence of coding mutations in congenital and acquired generalized lipoatrophy. Diabetes. 2000;49:1958–62.PubMedCrossRef
66.
Zurück zum Zitat Araújo-Vilar D, Loidi L, Domínguez F, Cabezas-Cerrato J. Phenotypic gender differences in subjects with familial partial lipodystrophy (Dunnigan variety) due to a nuclear lamin A/C R482W mutation. Horm Metab Res. 2003;35:29–35.PubMedCrossRef Araújo-Vilar D, Loidi L, Domínguez F, Cabezas-Cerrato J. Phenotypic gender differences in subjects with familial partial lipodystrophy (Dunnigan variety) due to a nuclear lamin A/C R482W mutation. Horm Metab Res. 2003;35:29–35.PubMedCrossRef
67.
Zurück zum Zitat • Béréziat V, Cervera P, Le Dour C, et al. LMNA mutations induce a non-inflammatory fibrosis and a brown fat-like dystrophy of enlarged cervical adipose tissue. Am J Pathol. 2011;179:2443–53. This work reported that accumulated adipose tissue in familial partial lipodystrophy is dystrophic, showing fibrosis and an altered differentiation pattern with brown fat-like adipocytes.PubMedCrossRef • Béréziat V, Cervera P, Le Dour C, et al. LMNA mutations induce a non-inflammatory fibrosis and a brown fat-like dystrophy of enlarged cervical adipose tissue. Am J Pathol. 2011;179:2443–53. This work reported that accumulated adipose tissue in familial partial lipodystrophy is dystrophic, showing fibrosis and an altered differentiation pattern with brown fat-like adipocytes.PubMedCrossRef
68.
Zurück zum Zitat Mory PB, Crispim F, Freire MB, et al. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol. 2012;167:423–31.PubMedCrossRef Mory PB, Crispim F, Freire MB, et al. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol. 2012;167:423–31.PubMedCrossRef
69.
Zurück zum Zitat Caux F, Dubosclard E, Lascols O, et al. A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J Clin Endocrinol Metab. 2003;88:1006–13.PubMedCrossRef Caux F, Dubosclard E, Lascols O, et al. A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J Clin Endocrinol Metab. 2003;88:1006–13.PubMedCrossRef
70.
Zurück zum Zitat Garg A, Subramanyam L, Agarwal AK, et al. Atypical progeroid syndrome due to heterozygous missense LMNA mutations. J Clin Endocrinol Metab. 2009;94:4971–83.PubMedCrossRef Garg A, Subramanyam L, Agarwal AK, et al. Atypical progeroid syndrome due to heterozygous missense LMNA mutations. J Clin Endocrinol Metab. 2009;94:4971–83.PubMedCrossRef
71.
Zurück zum Zitat Capanni C, Mattioli E, Columbaro M, et al. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum Mol Genet. 2005;14:1489–502.PubMedCrossRef Capanni C, Mattioli E, Columbaro M, et al. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum Mol Genet. 2005;14:1489–502.PubMedCrossRef
72.
Zurück zum Zitat •• Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472:221–5. These 2 studies highlighted the role of progerin (prelamin A mutated in Hutchinson-Gilford progeria) in ageing-associated cell phenotypes during differentiation and showed that iPSC are a model for studying the pathogenesis of laminopathies.PubMedCrossRef •• Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472:221–5. These 2 studies highlighted the role of progerin (prelamin A mutated in Hutchinson-Gilford progeria) in ageing-associated cell phenotypes during differentiation and showed that iPSC are a model for studying the pathogenesis of laminopathies.PubMedCrossRef
73.
Zurück zum Zitat •• Zhang J, Lian Q, Zhu G, et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell. 2011;8:31–45. These 2 studies highlighted the role of progerin (prelamin A mutated in Hutchinson-Gilford progeria) in ageing-associated cell phenotypes during differentiation and showed that iPSC are a model for studying the pathogenesis of laminopathies.PubMedCrossRef •• Zhang J, Lian Q, Zhu G, et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell. 2011;8:31–45. These 2 studies highlighted the role of progerin (prelamin A mutated in Hutchinson-Gilford progeria) in ageing-associated cell phenotypes during differentiation and showed that iPSC are a model for studying the pathogenesis of laminopathies.PubMedCrossRef
74.
Zurück zum Zitat Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol. 2008;10:452–9.PubMedCrossRef Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol. 2008;10:452–9.PubMedCrossRef
75.
Zurück zum Zitat Pekovic V, Hutchison CJ. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat. 2008;213:5–25.PubMedCrossRef Pekovic V, Hutchison CJ. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat. 2008;213:5–25.PubMedCrossRef
76.
Zurück zum Zitat Naetar N, Foisner R. Lamin complexes in the nuclear interior control progenitor cell proliferation and tissue homeostasis. Cell Cycle. 2009;8:1488–93.PubMedCrossRef Naetar N, Foisner R. Lamin complexes in the nuclear interior control progenitor cell proliferation and tissue homeostasis. Cell Cycle. 2009;8:1488–93.PubMedCrossRef
77.
Zurück zum Zitat Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.PubMedCrossRef Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.PubMedCrossRef
78.
Zurück zum Zitat Jeninga EH, Gurnell M, Kalkhoven E. Functional implications of genetic variation in human PPARgamma. Trends Endocrinol Metab. 2009;20:380–7.PubMedCrossRef Jeninga EH, Gurnell M, Kalkhoven E. Functional implications of genetic variation in human PPARgamma. Trends Endocrinol Metab. 2009;20:380–7.PubMedCrossRef
79.
Zurück zum Zitat • Auclair M, Vigouroux C, Boccara F, et al. Peroxisome proliferator-activated receptor-gamma mutations responsible for lipodystrophy with severe hypertension activate the cellular renin-angiotensin system. Arterioscler Thrombos Vasc Biol. 2013;33:829–38. A translational study of peroxisome proliferator-activated receptor γ translational study of peroxisome proliferator-activated rsupporting a role for PPARγ as a regulator of blood pressure through its ability to modulate the cellular renin-angiotensin system.CrossRef • Auclair M, Vigouroux C, Boccara F, et al. Peroxisome proliferator-activated receptor-gamma mutations responsible for lipodystrophy with severe hypertension activate the cellular renin-angiotensin system. Arterioscler Thrombos Vasc Biol. 2013;33:829–38. A translational study of peroxisome proliferator-activated receptor γ translational study of peroxisome proliferator-activated rsupporting a role for PPARγ as a regulator of blood pressure through its ability to modulate the cellular renin-angiotensin system.CrossRef
80.
Zurück zum Zitat Li F, Gu Y, Dong W, et al. Cell death-inducing DFF45-like effector, a lipid droplet-associated protein, might be involved in the differentiation of human adipocytes. FEBS J. 2010;277:4173–83.PubMedCrossRef Li F, Gu Y, Dong W, et al. Cell death-inducing DFF45-like effector, a lipid droplet-associated protein, might be involved in the differentiation of human adipocytes. FEBS J. 2010;277:4173–83.PubMedCrossRef
81.
Zurück zum Zitat Gandotra S, Lim K, Girousse A, et al. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem. 2011;286:34998–5006.PubMedCrossRef Gandotra S, Lim K, Girousse A, et al. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem. 2011;286:34998–5006.PubMedCrossRef
82.
Zurück zum Zitat Hegele RA, Cao H, Liu DM, et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet. 2006;79:383–9.PubMedCrossRef Hegele RA, Cao H, Liu DM, et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet. 2006;79:383–9.PubMedCrossRef
83.
Zurück zum Zitat Gao J, Li Y, Fu X, Luo X. A Chinese patient with acquired partial lipodystrophy caused by a novel mutation with LMNB2 gene. J Pediatr Endocrinol Metab. 2012;25:375–7.PubMedCrossRef Gao J, Li Y, Fu X, Luo X. A Chinese patient with acquired partial lipodystrophy caused by a novel mutation with LMNB2 gene. J Pediatr Endocrinol Metab. 2012;25:375–7.PubMedCrossRef
84.
Zurück zum Zitat Coffinier C, Hudon SE, Farber EA, et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc Natl Acad Sci U S A. 2007;104:13432–7.PubMedCrossRef Coffinier C, Hudon SE, Farber EA, et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc Natl Acad Sci U S A. 2007;104:13432–7.PubMedCrossRef
85.
Zurück zum Zitat •• Gordon LB, Kleinman ME, Miller DT, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109:16666–71. Results from the first clinical trial with farnesyl-transferase inhibitor in Hutchinson-Gilford progeria syndrome, showing the improvement of vascular stiffness and bone structure.PubMedCrossRef •• Gordon LB, Kleinman ME, Miller DT, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109:16666–71. Results from the first clinical trial with farnesyl-transferase inhibitor in Hutchinson-Gilford progeria syndrome, showing the improvement of vascular stiffness and bone structure.PubMedCrossRef
86.
Zurück zum Zitat Donadille B, D’Anella P, Auclair M, et al. Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet J Rare Dis. 2013;8:106.PubMedCrossRef Donadille B, D’Anella P, Auclair M, et al. Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet J Rare Dis. 2013;8:106.PubMedCrossRef
87.
Zurück zum Zitat Weedon MN, Ellard S, Prindle MJ, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet. 2013; [In press]. Weedon MN, Ellard S, Prindle MJ, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet. 2013; [In press].
88.
Zurück zum Zitat Dahl PR, Zalla MJ, Winkelmann RK. Localized involutional lipoatrophy: a clinicopathologic study of 16 patients. J Am Acad Dermatol. 1996;35:523–8.PubMedCrossRef Dahl PR, Zalla MJ, Winkelmann RK. Localized involutional lipoatrophy: a clinicopathologic study of 16 patients. J Am Acad Dermatol. 1996;35:523–8.PubMedCrossRef
89.
Zurück zum Zitat Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes. 2010;34:949–59.CrossRef Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes. 2010;34:949–59.CrossRef
90.
Zurück zum Zitat Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome–an allostatic perspective. Biochim Biophys Acta. 1801;2010:338–49. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome–an allostatic perspective. Biochim Biophys Acta. 1801;2010:338–49.
91.
Zurück zum Zitat Wilson DE, Chan IF, Stevenson KB, Horton SC, Schipke C. Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids in acquired total lipodystrophy: effects on hyperlipoproteinemia and endogenous insulin resistance. J Clin Endocrinol Metab. 1983;57:517–23.PubMedCrossRef Wilson DE, Chan IF, Stevenson KB, Horton SC, Schipke C. Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids in acquired total lipodystrophy: effects on hyperlipoproteinemia and endogenous insulin resistance. J Clin Endocrinol Metab. 1983;57:517–23.PubMedCrossRef
92.
Zurück zum Zitat Agarwal AK, Garg A. Genetic basis of lipodystrophies and management of metabolic complications. Annu Rev Med. 2006;57:297–311.PubMedCrossRef Agarwal AK, Garg A. Genetic basis of lipodystrophies and management of metabolic complications. Annu Rev Med. 2006;57:297–311.PubMedCrossRef
93.
Zurück zum Zitat Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346:570–8.PubMedCrossRef Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346:570–8.PubMedCrossRef
94.
Zurück zum Zitat Oral EA, Ruiz E, Andewelt A, et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J Clin Endocrinol Metab. 2002;87:3110–7.PubMedCrossRef Oral EA, Ruiz E, Andewelt A, et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J Clin Endocrinol Metab. 2002;87:3110–7.PubMedCrossRef
95.
Zurück zum Zitat Javor ED, Cochran EK, Musso C, et al. Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes. 2005;54:1994–2002.PubMedCrossRef Javor ED, Cochran EK, Musso C, et al. Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes. 2005;54:1994–2002.PubMedCrossRef
96.
Zurück zum Zitat Ebihara K, Kusakabe T, Hirata M, et al. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metab. 2007;92:532–41.PubMedCrossRef Ebihara K, Kusakabe T, Hirata M, et al. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metab. 2007;92:532–41.PubMedCrossRef
97.
Zurück zum Zitat Yu X, McCorkle S, Wang M, et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia. 2004;47:2012–21.PubMedCrossRef Yu X, McCorkle S, Wang M, et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia. 2004;47:2012–21.PubMedCrossRef
98.
Zurück zum Zitat Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941–6.PubMedCrossRef Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941–6.PubMedCrossRef
99.
Zurück zum Zitat Calderoni DR, Ramos TM, de Castro JR, Kharmandayan P. Surgical management of phenotypic alterations related to the Dunnigan variety of familial partial lipodystrophy. J Plast Reconstr Aesthet Surg. 2011;64:1248–50.PubMedCrossRef Calderoni DR, Ramos TM, de Castro JR, Kharmandayan P. Surgical management of phenotypic alterations related to the Dunnigan variety of familial partial lipodystrophy. J Plast Reconstr Aesthet Surg. 2011;64:1248–50.PubMedCrossRef
Metadaten
Titel
What the Genetics of Lipodystrophy Can Teach Us About Insulin Resistance and Diabetes
verfasst von
Camille Vatier
Guillaume Bidault
Nolwenn Briand
Anne-Claire Guénantin
Laurence Teyssières
Olivier Lascols
Jacqueline Capeau
Corinne Vigouroux
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Current Diabetes Reports / Ausgabe 6/2013
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-013-0431-7

Weitere Artikel der Ausgabe 6/2013

Current Diabetes Reports 6/2013 Zur Ausgabe

Psychosocial Aspects (KK Hood, Section Editor)

Utilization of Blood Glucose Data in Patient Education

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.