Skip to main content
Erschienen in: Current Diabetes Reports 11/2015

01.11.2015 | Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

Genes Affecting β-Cell Function in Type 1 Diabetes

Erschienen in: Current Diabetes Reports | Ausgabe 11/2015

Einloggen, um Zugang zu erhalten

Abstract

Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene regulators will also be addressed.
Literatur
2.
Zurück zum Zitat Coppieters KT, Dotta F, Amirian N, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.PubMedCentralCrossRefPubMed Coppieters KT, Dotta F, Amirian N, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Nerup J, Mandrup-Poulsen T, Helqvist S, et al. On the pathogenesis of IDDM. Diabetologia. 1994;37 Suppl 2:S82–9.CrossRefPubMed Nerup J, Mandrup-Poulsen T, Helqvist S, et al. On the pathogenesis of IDDM. Diabetologia. 1994;37 Suppl 2:S82–9.CrossRefPubMed
4.
Zurück zum Zitat Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.CrossRefPubMed Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.CrossRefPubMed
5.
Zurück zum Zitat Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53.PubMedCentralCrossRefPubMed Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Liu EH, Digon III BJ, Hirshberg B, et al. Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft. Diabetologia. 2009;52:1369–80.PubMedCentralCrossRefPubMed Liu EH, Digon III BJ, Hirshberg B, et al. Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft. Diabetologia. 2009;52:1369–80.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Gianani R, Campbell-Thompson M, Sarkar SA, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia. 2010;53:690–8.CrossRefPubMed Gianani R, Campbell-Thompson M, Sarkar SA, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia. 2010;53:690–8.CrossRefPubMed
8.•
Zurück zum Zitat Krogvold L, Skog O, Sundström G, et al.: Function of isolated pancreatic islets from patients at onset of type 1 diabetes; Insulin secretion can be restored after some days in a non-diabetogenic environment in vitro. Results from the DiViD study. Diabetes. 2015. This study shows that restoration of specific function of the isolated islets removed from patients at onset of type 1 diabetes can be obtained after in vitro culture. Krogvold L, Skog O, Sundström G, et al.: Function of isolated pancreatic islets from patients at onset of type 1 diabetes; Insulin secretion can be restored after some days in a non-diabetogenic environment in vitro. Results from the DiViD study. Diabetes. 2015. This study shows that restoration of specific function of the isolated islets removed from patients at onset of type 1 diabetes can be obtained after in vitro culture.
9.
Zurück zum Zitat van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.CrossRefPubMed van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.CrossRefPubMed
10.•
Zurück zum Zitat Saisho Y, Butler AE, Manesso E, et al. β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36:111–7. This autopsy study of a non-diabetic population suggests that the beta-cell mass may vary a log-fold between individuals.PubMedCentralCrossRefPubMed Saisho Y, Butler AE, Manesso E, et al. β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36:111–7. This autopsy study of a non-diabetic population suggests that the beta-cell mass may vary a log-fold between individuals.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40:1399–401.PubMedCentralCrossRefPubMed Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40:1399–401.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.PubMedCentralCrossRefPubMed Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Bradfield JP, Qu HQ, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011;7, e1002293.PubMedCentralCrossRefPubMed Bradfield JP, Qu HQ, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011;7, e1002293.PubMedCentralCrossRefPubMed
14.••
Zurück zum Zitat Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6. The ImmunoChip study of type 1 diabetes susceptibility loci confirms results from previous genome-wide association studies and identifies novel loci and risk variants.PubMedCentralCrossRefPubMed Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6. The ImmunoChip study of type 1 diabetes susceptibility loci confirms results from previous genome-wide association studies and identifies novel loci and risk variants.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Groop L, Pociot F. Genetics of diabetes--are we missing the genes or the disease? Mol Cell Endocrinol. 2014;382:726–39.CrossRefPubMed Groop L, Pociot F. Genetics of diabetes--are we missing the genes or the disease? Mol Cell Endocrinol. 2014;382:726–39.CrossRefPubMed
16.
18.
Zurück zum Zitat Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14:549–58.CrossRefPubMed Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14:549–58.CrossRefPubMed
20.•
Zurück zum Zitat Brorsson CA, Onengut S, Chen W-M, et al.: Novel association between immune-mediated susceptibility loci and persistent autoantibody positivity in type 1 diabetes. Diabetes. 2015. The most comprehensive study to demonstrate the genetic association to autoimmunity antibody positivity in type 1 diabetes. Brorsson CA, Onengut S, Chen W-M, et al.: Novel association between immune-mediated susceptibility loci and persistent autoantibody positivity in type 1 diabetes. Diabetes. 2015. The most comprehensive study to demonstrate the genetic association to autoimmunity antibody positivity in type 1 diabetes.
21.
Zurück zum Zitat Brorsson CA, Pociot F, T1DGC. Shared genetic basis for type 1 diabetes, islet autoantibodies and autoantibodies associated with other immune-mediated diseases in type 1 diabetes families. Diabetes Care. 2015;In Press. Brorsson CA, Pociot F, T1DGC. Shared genetic basis for type 1 diabetes, islet autoantibodies and autoantibodies associated with other immune-mediated diseases in type 1 diabetes families. Diabetes Care. 2015;In Press.
22.••
Zurück zum Zitat Bergholdt R, Brorsson C, Palleja A, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes. 2012;61:954–62. This study provides evidence that many of the genes in the type 1 diabetes susceptibility loci interact in functional networks and that the majority of these genes are expressed in human islets. Furthermore, this study highlights the advantage of integrating several types of data to understand complex diseases including type 1 diabetes.PubMedCentralCrossRefPubMed Bergholdt R, Brorsson C, Palleja A, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes. 2012;61:954–62. This study provides evidence that many of the genes in the type 1 diabetes susceptibility loci interact in functional networks and that the majority of these genes are expressed in human islets. Furthermore, this study highlights the advantage of integrating several types of data to understand complex diseases including type 1 diabetes.PubMedCentralCrossRefPubMed
23.••
Zurück zum Zitat Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8, e1002552. This study provides the most comprehensive transcriptome analysis of human islets under control conditions and following exposure to pro-inflammatory cytokines. It demonstrates that many of the candidate genes for type 1 diabetes are expressed in human islets.PubMedCentralCrossRefPubMed Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8, e1002552. This study provides the most comprehensive transcriptome analysis of human islets under control conditions and following exposure to pro-inflammatory cytokines. It demonstrates that many of the candidate genes for type 1 diabetes are expressed in human islets.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Storling J, Brorsson CA. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr Diab Rep. 2013;13:633–41.CrossRefPubMed Storling J, Brorsson CA. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr Diab Rep. 2013;13:633–41.CrossRefPubMed
25.
Zurück zum Zitat Colli ML, Moore F, Gurzov EN, et al. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19:135–46.PubMedCentralCrossRefPubMed Colli ML, Moore F, Gurzov EN, et al. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19:135–46.PubMedCentralCrossRefPubMed
26.•
Zurück zum Zitat Lincez PJ, Shanina I, Horwitz MS. Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes. Diabetes. 2015;64:2184–93. This work identifies MDA5 as an important target for preventative and therapeutic strategies to halt T1D. By reducing MDA5 gene expression in NOD mice a unique IFN-I signature that led to expansion of regulatory T cells at the site of autoimmunity and protection from T1D was identified.CrossRefPubMed Lincez PJ, Shanina I, Horwitz MS. Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes. Diabetes. 2015;64:2184–93. This work identifies MDA5 as an important target for preventative and therapeutic strategies to halt T1D. By reducing MDA5 gene expression in NOD mice a unique IFN-I signature that led to expansion of regulatory T cells at the site of autoimmunity and protection from T1D was identified.CrossRefPubMed
27.
Zurück zum Zitat Moore F, Colli ML, Cnop M, et al. PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes. 2009;58:1283–91.PubMedCentralCrossRefPubMed Moore F, Colli ML, Cnop M, et al. PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes. 2009;58:1283–91.PubMedCentralCrossRefPubMed
28.••
Zurück zum Zitat Nogueira TC, Paula FM, Villate O, et al. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 2013;9, e1003532. This study demonstrates that the type 1 and type 2 diabetes candidate gene GLIS3 has important functions in beta cells and besides its role in insulin transcription also regulates beta cell apoptosis by modulating alternative splicing of the pro-apoptotic protein Bim. Nogueira TC, Paula FM, Villate O, et al. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 2013;9, e1003532. This study demonstrates that the type 1 and type 2 diabetes candidate gene GLIS3 has important functions in beta cells and besides its role in insulin transcription also regulates beta cell apoptosis by modulating alternative splicing of the pro-apoptotic protein Bim.
29.
Zurück zum Zitat Santin I, Moore F, Colli ML, et al. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes. 2011;60:3279–88.PubMedCentralCrossRefPubMed Santin I, Moore F, Colli ML, et al. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes. 2011;60:3279–88.PubMedCentralCrossRefPubMed
30.••
Zurück zum Zitat Floyel T, Brorsson C, Nielsen LB, et al. CTSH regulates beta-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A. 2014;111:10305–10. This study demonstrates that the type 1 diabetes candidate gene CTSH has important functions in beta cells, and that type 1 diabetes risk SNPs affect CTSH expression and beta cell function in type 1 diabetes patients. Floyel T, Brorsson C, Nielsen LB, et al. CTSH regulates beta-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A. 2014;111:10305–10. This study demonstrates that the type 1 diabetes candidate gene CTSH has important functions in beta cells, and that type 1 diabetes risk SNPs affect CTSH expression and beta cell function in type 1 diabetes patients.
31.
Zurück zum Zitat Marroqui L, Santin I, Dos Santos RS, et al. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic beta-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes. 2014;63:2516–27.CrossRefPubMed Marroqui L, Santin I, Dos Santos RS, et al. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic beta-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes. 2014;63:2516–27.CrossRefPubMed
32.•
Zurück zum Zitat Soleimanpour SA, Gupta A, Bakay M, et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell. 2014;157:1577–90. The study describes an important role of the type 1 diabetes candidate gene CLEC16A in beta cell function and indicates that dysregulated autophagy/mitophagy could be implicated in beta cell dysfunction and development of type 1 diabetes. Soleimanpour SA, Gupta A, Bakay M, et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell. 2014;157:1577–90. The study describes an important role of the type 1 diabetes candidate gene CLEC16A in beta cell function and indicates that dysregulated autophagy/mitophagy could be implicated in beta cell dysfunction and development of type 1 diabetes.
33.
Zurück zum Zitat Izumi K, Mine K, Inoue Y, et al.: Reduced Tyk2 gene expression in beta-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat Commun. 2015;6 Izumi K, Mine K, Inoue Y, et al.: Reduced Tyk2 gene expression in beta-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat Commun. 2015;6
34.
Zurück zum Zitat Ziegler AG, Hillebrand B, Rabl W, et al. On the appearance of islet associated autoimmunity in offspring of diabetic mothers: a prospective study from birth. Diabetologia. 1993;36:402–8.CrossRefPubMed Ziegler AG, Hillebrand B, Rabl W, et al. On the appearance of islet associated autoimmunity in offspring of diabetic mothers: a prospective study from birth. Diabetologia. 1993;36:402–8.CrossRefPubMed
35.
Zurück zum Zitat Achenbach P, Koczwara K, Knopff A, et al. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest. 2004;114:589–97.PubMedCentralCrossRefPubMed Achenbach P, Koczwara K, Knopff A, et al. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest. 2004;114:589–97.PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.CrossRefPubMed Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.CrossRefPubMed
37.
Zurück zum Zitat Liu M, Sun J, Cui J, et al. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Asp Med. 2015;42:3–18.CrossRef Liu M, Sun J, Cui J, et al. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Asp Med. 2015;42:3–18.CrossRef
38.
Zurück zum Zitat Nejentsev S, Walker N, Riches D, et al. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.PubMedCentralCrossRefPubMed Nejentsev S, Walker N, Riches D, et al. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Skog O, Korsgren O, Frisk G. Modulation of innate immunity in human pancreatic islets infected with enterovirus in vitro. J Med Virol. 2011;83:658–64.CrossRefPubMed Skog O, Korsgren O, Frisk G. Modulation of innate immunity in human pancreatic islets infected with enterovirus in vitro. J Med Virol. 2011;83:658–64.CrossRefPubMed
41.
Zurück zum Zitat Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab. 2013;15 Suppl 3:71–81.CrossRefPubMed Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab. 2013;15 Suppl 3:71–81.CrossRefPubMed
42.
Zurück zum Zitat Cho YS, Chen C-H, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44:67–72.CrossRef Cho YS, Chen C-H, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44:67–72.CrossRef
43.
Zurück zum Zitat Senee V, Chelala C, Duchatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38:682–7.CrossRefPubMed Senee V, Chelala C, Duchatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38:682–7.CrossRefPubMed
44.
Zurück zum Zitat Kang HS, Kim Y-S, ZeRuth G, et al. Transcription factor Glis3, a novel critical player in the regulation of pancreatic β-cell development and insulin gene expression. Mol Cell Biol. 2009;29:6366–79.PubMedCentralCrossRefPubMed Kang HS, Kim Y-S, ZeRuth G, et al. Transcription factor Glis3, a novel critical player in the regulation of pancreatic β-cell development and insulin gene expression. Mol Cell Biol. 2009;29:6366–79.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Yang YS, Chang BHJ, Chan L. Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. Embo Mol Med. 2013;5:92–104.PubMedCentralCrossRefPubMed Yang YS, Chang BHJ, Chan L. Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. Embo Mol Med. 2013;5:92–104.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Yang Y, Chang BH-J, Samson SL, et al. The Krüppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res. 2009;37:2529–38.PubMedCentralCrossRefPubMed Yang Y, Chang BH-J, Samson SL, et al. The Krüppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res. 2009;37:2529–38.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.PubMedCentralCrossRefPubMed Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Barker A, Sharp SJ, Timpson NJ, et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes. 2011;60:1805–12.PubMedCentralCrossRefPubMed Barker A, Sharp SJ, Timpson NJ, et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes. 2011;60:1805–12.PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Wallace C, Smyth DJ, Maisuria-Armer M, et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet. 2010;42:68–71.PubMedCentralCrossRefPubMed Wallace C, Smyth DJ, Maisuria-Armer M, et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet. 2010;42:68–71.PubMedCentralCrossRefPubMed
50.••
Zurück zum Zitat Marroqui L, Santos RSD, Floyel T, et al.: TYK2, a candidate risk gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes. 2015. Marroqui L, Santos RSD, Floyel T, et al.: TYK2, a candidate risk gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes. 2015.
51.
Zurück zum Zitat Zhong H, Yang X, Kaplan LM, et al. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am J Hum Genet. 2010;86:581–91.PubMedCentralCrossRefPubMed Zhong H, Yang X, Kaplan LM, et al. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am J Hum Genet. 2010;86:581–91.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Gustafsson M, Nestor C, Zhang H, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 2014;6:82.PubMedCentralCrossRefPubMed Gustafsson M, Nestor C, Zhang H, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 2014;6:82.PubMedCentralCrossRefPubMed
54.
Zurück zum Zitat Mitra K, Carvunis AR, Ramesh SK, et al. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14:719–32.PubMedCentralCrossRefPubMed Mitra K, Carvunis AR, Ramesh SK, et al. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14:719–32.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Berchtold LA, Storling ZM, Ortis F, et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis. Proc Natl Acad Sci U S A. 2011;108:E681–8.PubMedCentralCrossRefPubMed Berchtold LA, Storling ZM, Ortis F, et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis. Proc Natl Acad Sci U S A. 2011;108:E681–8.PubMedCentralCrossRefPubMed
56.
Zurück zum Zitat Lopes M, Kutlu B, Miani M, et al. Temporal profiling of cytokine-induced genes in pancreatic beta-cells by meta-analysis and network inference. Genomics. 2014;103:264–75.CrossRefPubMed Lopes M, Kutlu B, Miani M, et al. Temporal profiling of cytokine-induced genes in pancreatic beta-cells by meta-analysis and network inference. Genomics. 2014;103:264–75.CrossRefPubMed
57.
Zurück zum Zitat Bergholdt R, Storling ZM, Lage K, et al. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol. 2007;8:R253.PubMedCentralCrossRefPubMed Bergholdt R, Storling ZM, Lage K, et al. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol. 2007;8:R253.PubMedCentralCrossRefPubMed
58.
Zurück zum Zitat Evangelou M, Smyth DJ, Fortune MD, et al. A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations. Genet Epidemiol. 2014;38:661–70.PubMedCentralCrossRefPubMed Evangelou M, Smyth DJ, Fortune MD, et al. A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations. Genet Epidemiol. 2014;38:661–70.PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.PubMedCentralCrossRefPubMed Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.PubMedCentralCrossRefPubMed
60.
Zurück zum Zitat Eliasson L, Esguerra JL. Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf). 2014;211:273–84.CrossRef Eliasson L, Esguerra JL. Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf). 2014;211:273–84.CrossRef
61.
Zurück zum Zitat Plaisance V, Waeber G, Regazzi R, et al. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J Diabetes Res. 2014;2014:618652.PubMedCentralPubMed Plaisance V, Waeber G, Regazzi R, et al. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J Diabetes Res. 2014;2014:618652.PubMedCentralPubMed
62.
Zurück zum Zitat Guay C, Jacovetti C, Nesca V, et al. Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes Metab. 2012;14 Suppl 3:12–21.CrossRefPubMed Guay C, Jacovetti C, Nesca V, et al. Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes Metab. 2012;14 Suppl 3:12–21.CrossRefPubMed
64.
Zurück zum Zitat Kalis M, Bolmeson C, Esguerra JLS, et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One. 2011;6, e29166.PubMedCentralCrossRefPubMed Kalis M, Bolmeson C, Esguerra JLS, et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One. 2011;6, e29166.PubMedCentralCrossRefPubMed
65.
Zurück zum Zitat Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011;30:835–45.PubMedCentralCrossRefPubMed Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011;30:835–45.PubMedCentralCrossRefPubMed
66.
Zurück zum Zitat Özcan S. Minireview: microRNA function in pancreatic β cells. Mol Endocrinol. 2014;28:1922–33.CrossRefPubMed Özcan S. Minireview: microRNA function in pancreatic β cells. Mol Endocrinol. 2014;28:1922–33.CrossRefPubMed
67.
Zurück zum Zitat Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88.CrossRefPubMed Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88.CrossRefPubMed
68.
Zurück zum Zitat de Jong VM, Zaldumbide A, van der Slik AR, et al. Post-transcriptional control of candidate risk genes for type 1 diabetes by rare genetic variants. Genes Immun. 2013;14:58–61.CrossRefPubMed de Jong VM, Zaldumbide A, van der Slik AR, et al. Post-transcriptional control of candidate risk genes for type 1 diabetes by rare genetic variants. Genes Immun. 2013;14:58–61.CrossRefPubMed
69.
Zurück zum Zitat Gong W, Xiao D, Ming G, et al. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J Diabetes. 2014;6:279–89.CrossRefPubMed Gong W, Xiao D, Ming G, et al. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J Diabetes. 2014;6:279–89.CrossRefPubMed
70.
Zurück zum Zitat Guay C, Menoud V, Rome S, et al. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal. 2015;13:17.PubMedCentralCrossRefPubMed Guay C, Menoud V, Rome S, et al. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal. 2015;13:17.PubMedCentralCrossRefPubMed
73.••
Zurück zum Zitat Morán I, Akerman İ, Van de Bunt M, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 2012;16:435–48. A comprehensive strand-specific transcriptome map of human pancreatic islets and β-cells. The study uncovers >1100 intergenic and antisense islet-cell lncRNA genes, and show that islet lncRNAs are dynamically regulated and important for β-cell differentiation and maturation.PubMedCentralCrossRefPubMed Morán I, Akerman İ, Van de Bunt M, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 2012;16:435–48. A comprehensive strand-specific transcriptome map of human pancreatic islets and β-cells. The study uncovers >1100 intergenic and antisense islet-cell lncRNA genes, and show that islet lncRNAs are dynamically regulated and important for β-cell differentiation and maturation.PubMedCentralCrossRefPubMed
74.
Zurück zum Zitat Li B, Bi C, Lang N, et al. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines. Mol Biol Rep. 2014;41:1917–25.CrossRefPubMed Li B, Bi C, Lang N, et al. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines. Mol Biol Rep. 2014;41:1917–25.CrossRefPubMed
75.•
Zurück zum Zitat Benner C, van der Meulen T, Caceres E, et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics. 2014;15:620. A comprehensive mouse alpha and beta cell transcriptome study, which can be a valuable resource to improve the translatability of rodent studies.PubMedCentralCrossRefPubMed Benner C, van der Meulen T, Caceres E, et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics. 2014;15:620. A comprehensive mouse alpha and beta cell transcriptome study, which can be a valuable resource to improve the translatability of rodent studies.PubMedCentralCrossRefPubMed
76.•
Zurück zum Zitat Mirza AH, Kaur S, Brorsson CA, et al. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci. PLoS One. 2014;9:e105723. Maps lincRNAs to genomic regions demonstrating GWAS significant association to type 1 diabetes and shows that more than fifty per cent of the genes in these regions are non-protein coding.PubMedCentralCrossRefPubMed Mirza AH, Kaur S, Brorsson CA, et al. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci. PLoS One. 2014;9:e105723. Maps lincRNAs to genomic regions demonstrating GWAS significant association to type 1 diabetes and shows that more than fifty per cent of the genes in these regions are non-protein coding.PubMedCentralCrossRefPubMed
77.
Zurück zum Zitat Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.PubMedCentralCrossRefPubMed Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.PubMedCentralCrossRefPubMed
78.••
Zurück zum Zitat Nica AC, Ongen H, Irminger JC, et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 2013;23:1554–62. Interesting transc11riptome analysis of isolated human islet as well as beta-cells and non-beta cells making it possible to identify beta-cell specific genes.PubMedCentralCrossRefPubMed Nica AC, Ongen H, Irminger JC, et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 2013;23:1554–62. Interesting transc11riptome analysis of isolated human islet as well as beta-cells and non-beta cells making it possible to identify beta-cell specific genes.PubMedCentralCrossRefPubMed
80.
Zurück zum Zitat Sandovici I, Hammerle C, Ozanne S, et al. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci. 2013;70:1575–95.CrossRefPubMed Sandovici I, Hammerle C, Ozanne S, et al. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci. 2013;70:1575–95.CrossRefPubMed
81.
Zurück zum Zitat Raciti G, Longo M, Parrillo L, et al.: Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol. 2015:1–7. Raciti G, Longo M, Parrillo L, et al.: Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol. 2015:1–7.
82.
Zurück zum Zitat Gilbert ER, Liu D. Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics. 2012;7:841–52.PubMedCentralCrossRefPubMed Gilbert ER, Liu D. Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics. 2012;7:841–52.PubMedCentralCrossRefPubMed
83.••
Zurück zum Zitat Olsson AH, Volkov P, Bacos K, et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet. 2014;10, e1004735. The study identifies a large number of mQTLs in a large set of human islets.PubMedCentralCrossRefPubMed Olsson AH, Volkov P, Bacos K, et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet. 2014;10, e1004735. The study identifies a large number of mQTLs in a large set of human islets.PubMedCentralCrossRefPubMed
84.
Zurück zum Zitat Ling C, Poulsen P, Simonsson S, et al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest. 2007;117:3427–35.PubMedCentralCrossRefPubMed Ling C, Poulsen P, Simonsson S, et al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest. 2007;117:3427–35.PubMedCentralCrossRefPubMed
85.
Zurück zum Zitat Lewis EC, Blaabjerg L, Storling J, et al. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta cells in vivo and in vitro. Mol Med. 2011;17:369–77.PubMedCentralCrossRefPubMed Lewis EC, Blaabjerg L, Storling J, et al. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta cells in vivo and in vitro. Mol Med. 2011;17:369–77.PubMedCentralCrossRefPubMed
86.
Zurück zum Zitat Chou Danny H-C, Holson Edward B, Wagner Florence F, et al. Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis. Chem Biol. 2012;19:669–73.PubMedCentralCrossRefPubMed Chou Danny H-C, Holson Edward B, Wagner Florence F, et al. Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis. Chem Biol. 2012;19:669–73.PubMedCentralCrossRefPubMed
87.
Zurück zum Zitat De Santis M, Selmi C. The therapeutic potential of epigenetics in autoimmune diseases. Clin Rev Allergy Immunol. 2012;42:92–101.CrossRefPubMed De Santis M, Selmi C. The therapeutic potential of epigenetics in autoimmune diseases. Clin Rev Allergy Immunol. 2012;42:92–101.CrossRefPubMed
88.
Zurück zum Zitat Scharfmann R, Rachdi L, Ravassard P. Concise review: in search of unlimited sources of functional human pancreatic beta cells. Stem Cells Transl Med. 2013;2:61–7.PubMedCentralCrossRefPubMed Scharfmann R, Rachdi L, Ravassard P. Concise review: in search of unlimited sources of functional human pancreatic beta cells. Stem Cells Transl Med. 2013;2:61–7.PubMedCentralCrossRefPubMed
89.
Zurück zum Zitat Roep BO, Atkinson M, von Herrath M. Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes. Nat Rev Immunol. 2004;4:989–97.CrossRefPubMed Roep BO, Atkinson M, von Herrath M. Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes. Nat Rev Immunol. 2004;4:989–97.CrossRefPubMed
90.
Zurück zum Zitat Brissova M, Fowler MJ, Nicholson WE, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53:1087–97.CrossRefPubMed Brissova M, Fowler MJ, Nicholson WE, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53:1087–97.CrossRefPubMed
91.
Zurück zum Zitat Cabrera O, Berman DM, Kenyon NS, et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A. 2006;103:2334–9.PubMedCentralCrossRefPubMed Cabrera O, Berman DM, Kenyon NS, et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A. 2006;103:2334–9.PubMedCentralCrossRefPubMed
92.
94.
Zurück zum Zitat Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat Rev Genet. 2014;15:734–48.CrossRefPubMed Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat Rev Genet. 2014;15:734–48.CrossRefPubMed
95.
Zurück zum Zitat Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.PubMedCentralCrossRefPubMed Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.PubMedCentralCrossRefPubMed
96.••
Zurück zum Zitat Yue F, Cheng Y, Breschi A, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–64. A comparison of the transcriptional and cellular regulatory elements in the mouse genome with the human genome. The study demonstrates substantial conservation in functional sequences, but also finds a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization.PubMedCentralCrossRefPubMed Yue F, Cheng Y, Breschi A, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–64. A comparison of the transcriptional and cellular regulatory elements in the mouse genome with the human genome. The study demonstrates substantial conservation in functional sequences, but also finds a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization.PubMedCentralCrossRefPubMed
98.
Zurück zum Zitat Sabarinathan R, Tafer H, Seemann SE, et al. RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs. Hum Mutat. 2013;34:546–56.PubMedCentralCrossRefPubMed Sabarinathan R, Tafer H, Seemann SE, et al. RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs. Hum Mutat. 2013;34:546–56.PubMedCentralCrossRefPubMed
Metadaten
Titel
Genes Affecting β-Cell Function in Type 1 Diabetes
Publikationsdatum
01.11.2015
Erschienen in
Current Diabetes Reports / Ausgabe 11/2015
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-015-0655-9

Weitere Artikel der Ausgabe 11/2015

Current Diabetes Reports 11/2015 Zur Ausgabe

Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)

The Detection and Management of Diabetes Distress in People With Type 1 Diabetes

Health Care Delivery Systems and Implementation in Diabetes (EB Morton-Eggleston, Section Editor)

Strategies for Improving Cardiovascular Health in Women With Diabetes Mellitus: a Review of the Evidence

Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)

Targeting Memory T Cells in Type 1 Diabetes

Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)

New and Emerging Biomarkers in Cardiovascular Disease

Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)

Insights From Cardiovascular Outcome Trials with Novel Antidiabetes Agents: What Have We Learned? An Industry Perspective

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.