Skip to main content

Advertisement

Log in

Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure

  • Experimental Therapeutics (L.S. Maier, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In highly prevalent cardiac diseases, new therapeutic approaches are needed. Since the first description of oxidative stress in heart failure, reactive oxygen species (ROS) have been considered as attractive drug targets. Though clinical trials evaluating antioxidant vitamins as ROS-scavenging agents yielded neutral results in patients at cardiovascular risk, the knowledge of ROS as pathophysiological factors has considerably advanced in the past few years and led to novel treatment approaches. Here, we review recent new insights and current strategies in targeting mitochondrial calcium handling and ROS in heart failure.

Recent Findings

Mitochondria are an important ROS source, and more recently, drug development focused on targeting mitochondria (e.g. by SS-31 or MitoQ). Important advancement has also been made to decipher how the matching of energy supply and demand through calcium (Ca2+) handling impacts on mitochondrial ROS production and elimination. This opens novel opportunities to ameliorate mitochondrial dysfunction in heart failure by targeting cytosolic and mitochondrial ion transporters to improve this matching process. According to this approach, highly specific substances as the preclinical CGP-37157, as well as the clinically used ranolazine and empagliflozin, provide promising results on different levels of evidence. Furthermore, the understanding of redox signalling relays, resembled by catalyst-mediated protein oxidation, is about to change former paradigms of ROS signalling. Novel methods, as redox proteomics, allow to precisely analyse key regulatory thiol switches, which may induce adaptive or maladaptive signalling. Additionally, the generation of genetically encoded probes increased the spatial and temporal resolution of ROS imaging and opened a new methodological window to subtle, formerly obscured processes.

Summary

These novel insights may broaden our understanding of why previous attempts to target oxidative stress have failed, and at the same time provide us with new targets for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Münzel T, Camici G, Maack C, Bonetti N, Fuster V, Kovacic J. Impact of oxidative stress on the heart and vasculature. J. Am. Coll. Cardiol. 2017;in press.

  2. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342:154–60.

    Article  CAS  PubMed  Google Scholar 

  3. •• Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, Becker J, et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 2015;22:472–84. In this paper, we discovered a novel mechanism how pathological cardiac workload increases oxidative stress in mitochondria, and that this oxidative stress played a causal role in the development of heart failure. It also suggests that targeting mitochondria with SS-31 to reduce oxidative stress rescued mortality in mice with heart failure.

    Article  CAS  PubMed  Google Scholar 

  4. Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol. 2017;595:3753–3763.

  5. •• Fujikawa Y, Roma LP, Sobotta MC, Rose AJ, Diaz MB, Locatelli G, et al. Mouse redox histology using genetically encoded probes. Sci Signal. 2016;9:rs1. In this paper, a novel mouse model was developed with which oxidative stress can be analyzed in mitochondria of virtually any organ of interest, with high spatial resolution to discriminate different cell types within an organ. The technique uses histological analysis of a redox-based reporter protein that is highly sensitive and specific for hydrogen peroxide (H 2 O 2 ).

    Article  PubMed  CAS  Google Scholar 

  6. • Swain L, Kesemeyer A, Meyer-Roxlau S, Vettel C, Zieseniss A, Güntsch A, et al. Redox imaging using cardiac myocyte-specific transgenic biosensor mice. Circ Res. 2016;119:1004–16. In this paper, transgenic mice were generated with cardiac myocyte-restricted expression of a redox-sensitive reporter coupled to glutaredoxin 1. Behaving like an endogenous protein, it quantifies glutathione redox potential with high temporal resolution and allows deeper insights into the balance between ROS production and elimination. As it is targeted to either mitochondrial matrix or cytoplasm, it remarkably increases spatial resolution.

    CAS  PubMed  Google Scholar 

  7. Leichert LI, Dick TP. Incidence and physiological relevance of protein thiol switches. Biol Chem. 2015;396:389–99.

    Article  CAS  PubMed  Google Scholar 

  8. Dietl A, Stark K, Zimmermann ME, Meisinger C, Schunkert H, Birner C, et al. NT-proBNP Predicts Cardiovascular Death in the General Population Independent of Left Ventricular Mass and Function: Insights from a Large Population-Based Study with Long-Term Follow-Up. PLoS ONE 2016;11(10):e0164060. doi:10.1371/journal.pone.0164060.

  9. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;2016

  10. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    Article  PubMed  CAS  Google Scholar 

  11. Birner C, Ulucan C, Bratfisch M, Götz T, Dietl A, Schweda F, et al. Antihypertrophic effects of combined inhibition of the renin-angiotensin system (RAS) and neutral endopeptidase (NEP) in progressive, tachycardia-induced experimental heart failure. Naunyn Schmiedeberg's Arch Pharmacol. 2012;385:1117–25.

    Article  CAS  Google Scholar 

  12. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM. Redox signaling in cardiac physiology and pathology. Circ Res. 2012;111:1091–106.

    Article  CAS  PubMed  Google Scholar 

  13. Sag CM, Schnelle M, Zhang J, Murdoch CE, Kossmann S, Protti A, et al. Distinct Regulatory Effects of Myeloid Cell and Endothelial Cell Nox2 on Blood Pressure. Circulation 2017;135: 2163–2177.

  14. Brandes RP, Weissmann N, Schröder K. Redox-mediated signal transduction by cardiovascular NOX NADPH oxidases. J Mol Cell Cardiol. 2014;73:70–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  CAS  PubMed  Google Scholar 

  16. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35.

    Article  PubMed  CAS  Google Scholar 

  17. Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008;275:3278–89.

    Article  CAS  PubMed  Google Scholar 

  18. Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, et al. Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure. Antioxid Redox Signal. 2016;25:10–27.

    Article  CAS  PubMed  Google Scholar 

  19. Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26–33.

    Article  CAS  PubMed  Google Scholar 

  20. Aon MA, Cortassa S, O’Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta. 2010;1797:865–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Münzel T, Gori T, Keaney JF, Maack C, Daiber A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J. 2015;36:2555–64.

    Article  PubMed  Google Scholar 

  22. Santos CXC, Raza S, Shah AM. Redox signaling in the cardiomyocyte: from physiology to failure. Int J Biochem Cell Biol. 2016;74:145–51.

    Article  CAS  PubMed  Google Scholar 

  23. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88:529–35.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Prosser BL, Bamboye MA, Gondim ANS, Santos CX, Martin D, et al. Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol. 2015;66:261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yun Kim T, Terentyeva R, Roder KHF, Li W, Liu M, Greener I, et al. SK Channel Enhancers Attenuate Ca2+-Dependent Arrhythmia in Hypertrophic Hearts by Regulating Mito-ROS-Dependent Oxidation and Activity of RyR. Cardiovasc. Res. 2017;113:343–353.

  26. Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, et al. NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII. J Mol Cell Cardiol. 2014;75:206–15.

    Article  CAS  PubMed  Google Scholar 

  27. Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008;133:978–93.

    Article  CAS  PubMed  Google Scholar 

  28. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.

    Article  CAS  PubMed  Google Scholar 

  30. Maack C, Kartes T, Kilter H, Schäfers H-J, Nickenig G, Böhm M, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation. 2003;108:1567–74.

    Article  CAS  PubMed  Google Scholar 

  31. Belch JJ, Bridges AB, Scott N, Chopra M. Oxygen free radicals and congestive heart failure. Br Heart J. 1991;65:245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. 1996;28:506–14.

    Article  CAS  PubMed  Google Scholar 

  33. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20, 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:23–33.

  34. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in pa- tients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–6.

  35. Cross AR, Segal AW. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta Bioenerg. 2004;1657:1–22.

    Article  CAS  Google Scholar 

  36. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–9.

    Article  CAS  PubMed  Google Scholar 

  37. Laufs U, Kilter H, Konkol C, Wassmann S, Böhm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res. 2002;53:911–20.

    Article  CAS  PubMed  Google Scholar 

  38. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120:229–43.

    Article  CAS  PubMed  Google Scholar 

  39. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37:2315–81.

    Article  PubMed  Google Scholar 

  40. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388:2532–61.

    Article  CAS  PubMed  Google Scholar 

  41. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest. 2001;108:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation. 2001;104:982–5.

    Article  CAS  PubMed  Google Scholar 

  43. Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, et al. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002;105:868–73.

    Article  CAS  PubMed  Google Scholar 

  44. Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation. 2001;104:576–81.

    Article  CAS  PubMed  Google Scholar 

  45. Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JGF, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248–61.

    Article  CAS  PubMed  Google Scholar 

  46. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2016;14:30–8.

    Article  PubMed  CAS  Google Scholar 

  47. Mollnau H, Wendt M, Szöcs K, Lassègue B, Schulz E, Oelze M, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90:E58–65.

    Article  PubMed  Google Scholar 

  48. • Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96. This paper highlights the crosstalk of reactive oxygen species from NADPH oxidases and mitochondria in vascular cells. It shows that mitochondria amplify reactive oxygen species (ROS) formation from NADPH oxiase and vice versa, that NADPH oxidase-dependent ROS activate NADPH oxidase.

    Article  CAS  PubMed  Google Scholar 

  49. Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011;58:73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108:837–46. This paper shows that the NADPH oxidase-mitochondrial ROS crosstalk, as described by Doughan et al. (ref. 48) in vascular cells, also contributes to maladaptive cardiac remodeling and the development of diastolic heart failure in response to angiotensin II. It further shows that targeting mitochondrial ROS prevents this phenotype, while targeting cytosolic ROS in a rather non-specific way does not prevent angiotensin II-induced heart failure, giving a clue to why nonspecific antioxidants have been unsuccesful in patients at cardiovascular risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997;29:207–16.

    Article  CAS  PubMed  Google Scholar 

  52. Kaeffer N, Richard V, Thuillez C. Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals. Circulation. 1997;96:2311–6.

    Article  CAS  PubMed  Google Scholar 

  53. Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–8.

    Article  Google Scholar 

  54. Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci. 2009;106:8665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20:709–11.

    Article  CAS  PubMed  Google Scholar 

  56. Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW. Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res. 2014;115:348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  58. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383:1933–43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;375:752–762.

  60. Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. 2007;356:1140–51.

    Article  PubMed  Google Scholar 

  61. Arcaro A, Pirozzi F, Angelini A, Chimenti C, Crotti L, Giordano C, et al. Novel perspectives in redox biology and pathophysiology of failing myocytes: modulation of the intramyocardial redox milieu for therapeutic interventions—a review article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. Oxid Med Cell Longev. 2016;2016:6353469.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389:1253–67.

    Article  PubMed  Google Scholar 

  63. Birner C, Dietl A, Deutzmann R, Schröder J, Schmid P, Jungbauer C, et al. Proteomic profiling implies mitochondrial dysfunction in tachycardia-induced heart failure. J Card Fail. 2012;18:660–73.

    Article  CAS  PubMed  Google Scholar 

  64. Dietl A, Winkel I, Deutzmann R, Schröder J, Hupf J, Riegger G, et al. Interatrial differences of basal molecular set-up and changes in tachycardia-induced heart failure—a proteomic profiling study. Eur J Heart Fail. 2014;16:835–45.

  65. Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 2015;59:359–71.

    Article  CAS  PubMed  Google Scholar 

  66. Peralta D, Bronowska AK, Morgan B, Dóka É, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol. 2015;11:156–63.

    Article  CAS  PubMed  Google Scholar 

  67. Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017;113:411–21.

    Article  PubMed  Google Scholar 

  68. Bers DM. Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda). 2006;21:380–7.

  69. Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, et al. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep. 2015;12:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505:335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  72. •• Dey S, Sidor A, O’Rourke B. Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem. 2016;291:11185–97. This paper highlights that the cellular antioxidative capacity is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. By genetic manipulation of heart-derived H9c2 cardiac myoblasts, it dissects the importance of specific antioxidant enzymes. Using novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensors of H 2 O 2 or oxidized glutathione, it reveales insights into the compartmentalized redox network and underscores the significance of mitochondrial metabolsim for cellular ROS handling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maack C, Böhm M. Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J Am Coll Cardiol. 2011;58:83–6.

    Article  CAS  PubMed  Google Scholar 

  74. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Letts JA, Fiedorczuk K, Sazanov LA. The architecture of respiratory supercomplexes. Nature. 2016;537:644–8.

    Article  CAS  PubMed  Google Scholar 

  76. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  77. von Hardenberg A, Maack C. Mitochondrial Therapies in Heart Failure. Handb. Exp. Pharmacol. 2017;243:491–514.

  78. Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013;98:259–68.

    Article  CAS  PubMed  Google Scholar 

  79. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation. 2010;121:1606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang H, Du Y, Zhang X, Lu J, Holmgren A. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal. 2014;21:669–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res. 2014;115:44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, et al. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation. 2009;119:2435–43.

    Article  CAS  PubMed  Google Scholar 

  83. Weber CR, Piacentino V, Houser SR, Bers DM. Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation. 2003;108:2224–9.

    Article  CAS  PubMed  Google Scholar 

  84. Palty R, Sekler I. The mitochondrial Na+/Ca2+ exchanger. Cell Calcium. 2012;52:9–15.

    Article  CAS  PubMed  Google Scholar 

  85. De Marchi U, Santo-Domingo J, Castelbou C, Sekler I, Wiederkehr A, Demaurex N. NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J Biol Chem. 2014;289:20377–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B. Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res. 2003;93:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rydström J. Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta Bioenerg. 2006;1757:721–6.

    Article  CAS  Google Scholar 

  89. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–96.

    Article  CAS  PubMed  Google Scholar 

  90. Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc). 2005;70:222–30.

    Article  CAS  Google Scholar 

  91. Murphy MP, Smith RAJ. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.

    Article  CAS  PubMed  Google Scholar 

  92. James AM, Cochemé HM, Smith RAJ, Murphy MP. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem. 2005;280:21295–312.

    Article  CAS  PubMed  Google Scholar 

  93. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–95.

    Article  CAS  PubMed  Google Scholar 

  94. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54:322–8.

  95. Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, et al. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J. 2009;96:1388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Supinski GS, Murphy MP, Callahan LA. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1095–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vergeade A, Mulder P, Vendeville-Dehaudt C, Estour F, Fortin D, Ventura-Clapier R, et al. Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: prevention by the targeted antioxidant MitoQ. Free Radic Biol Med. 2010;49:748–56.

    Article  CAS  PubMed  Google Scholar 

  98. Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 2010;25:1670–4.

    Article  PubMed  Google Scholar 

  99. Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30:1019–26.

    Article  CAS  PubMed  Google Scholar 

  100. James AM, Sharpley MS, Manas A-RB, Frerman FE, Hirst J, Smith RAJ, et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282:14708–18.

    Article  CAS  PubMed  Google Scholar 

  101. Doughan AK, Dikalov SI. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal. 2007;9:1825–36.

    Article  CAS  PubMed  Google Scholar 

  102. Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171:2029–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24:1250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dai D-F, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, et al. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail. 2013;6:1067–76.

    Article  CAS  PubMed  Google Scholar 

  105. Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A, et al. EMBRACE STEMI study: a phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J. 2016;37:1296–303.

    Article  PubMed  Google Scholar 

  106. Silva FSG, Simoes RF, Couto R, Oliveira PJ. Targeting mitochondria in cardiovascular diseases. Curr Pharm Des. 2016;22:5698–717.

    Article  CAS  PubMed  Google Scholar 

  107. Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. FASEB J. 2015;29:4766–71.

    Article  CAS  PubMed  Google Scholar 

  108. Mailloux RJ. Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 2016;22:4763–79.

    Article  CAS  PubMed  Google Scholar 

  109. Ajith TA, Jayakumar TG. Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J Cardiol. 2014;6:1091–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fetisova EK, Chernyak BV, Korshunova GA, Muntyan MS, Skulachev VP. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr Med Chem. 2017;24:1–1.

    Article  Google Scholar 

  111. Reddy AP, Reddy PH. Mitochondria-targeted molecules as potential drugs to treat patients with Alzheimer’s disease. Prog Mol Biol Transl Sci. 2017;146:173–201.

    Article  CAS  PubMed  Google Scholar 

  112. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta. 2016;1863:1066–1077.

  113. Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016;231:2570–81.

    Article  CAS  PubMed  Google Scholar 

  114. Chiesi M, Schwaller R, Eichenberger K. Structural dependency of the inhibitory action of benzodiazepines and related compounds on the mitochondrial Na+-Ca2+ exchanger. Biochem Pharmacol. 1988;37:4399–403.

    Article  CAS  PubMed  Google Scholar 

  115. Cox DA, Conforti L, Sperelakis N, Matlib MA. Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol. 1993;21:595–9.

    Article  CAS  PubMed  Google Scholar 

  116. Liu T, O’Rourke B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res. 2008;103:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu T, Brown DA, O’Rourke B. Role of mitochondrial dysfunction in cardiac glycoside toxicity. J Mol Cell Cardiol. 2010;49:728–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. • Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res. 2014;115:44–54. This paper shows that targeting mitochondrial ion transporters to re-calibrate the energy supply and demand mismatch can prevent maladaptive cardiac remodeling, left ventricular dysfunction and lethal arrhythmias in a guinea pig model of heart failure. It adds further evidence on an in vivo basis to the concept that the elevation of cytosolic sodium concentrations in failing cardiac myocytes contributes to maladaptive remodeling and heart failure development by decreasing mitochondrial calcium uptake .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Choudhary V, Kaddour-Djebbar I, Alaisami R, Kumar M, Bollag W. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells. Int J Oncol. 2014;44:1767–73.

    CAS  PubMed  Google Scholar 

  120. Ruiz A, Alberdi E, Matute C. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis. 2014;5:e1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pieske B, Houser SR. [Na+]i handling in the failing human heart. Cardiovasc Res. 2003;57:874–86.

    Article  CAS  PubMed  Google Scholar 

  122. Wagner S, Dybkova N, Rasenack ECL, Jacobshagen C, Fabritz L, Kirchhof P, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116:3127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maltsev VA, Silverman N, Sabbah HN, Undrovinas AI. Chronic heart failure slows late sodium current in human and canine ventricular myocytes: implications for repolarization variability. Eur J Heart Fail. 2007;9:219–27.

    Article  CAS  PubMed  Google Scholar 

  124. Sossalla S, Maurer U, Schotola H, Hartmann N, Didié M, Zimmermann W-H, et al. Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current. Basic Res Cardiol. 2011;106:263–72.

    Article  CAS  PubMed  Google Scholar 

  125. Viatchenko-Karpinski S, Kornyeyev D, El-Bizri N, Budas G, Fan P, Jiang Z, et al. Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes. J Mol Cell Cardiol. 2014;76:247–56.

    Article  CAS  PubMed  Google Scholar 

  126. Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, et al. Reactive oxygen species-activated Ca/calmodulin kinase II is required for late INa augmentation leading to cellular Na and Ca overload. Circ Res. 2011;108:555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang Z, Kirton HM, Al-Owais M, Thireau J, Richard S, Peers C, et al. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias. Antioxid. Redox Signal. 2016; ahead of print. doi:10.1089/ars.2015.6485.

  128. Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non-ST-segment elevation acute coronary syndrome. Circulation. 2007;116

  129. Banerjee K, Ghosh RK, Kamatam S, Banerjee A, Gupta A. Role of ranolazine in cardiovascular disease and diabetes: exploring beyond angina. Int J Cardiol. 2017;227:556–64.

    Article  PubMed  Google Scholar 

  130. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 2006;17(Suppl 1):S169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br. J. Pharmacol. 2017; ahead of print doi:10.1111/bph.13791.

  132. Sossalla S, Wagner S, Rasenack ECL, Ruff H, Weber SL, Schöndube FA, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts—role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45:32–43.

    Article  CAS  PubMed  Google Scholar 

  133. Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino T, et al. Ranolazine prevents phenotype development in a mouse model of hypertrophic cardiomyopathy clinical perspective. Circ Hear Fail. 2017;10:e003565.

    Article  CAS  Google Scholar 

  134. Flenner F, Friedrich FW, Ungeheuer N, Christ T, Geertz B, Reischmann S, et al. Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects in vivo in a mouse model of hypertrophic cardiomyopathy. Cardiovasc Res. 2016;109:90–102.

    Article  CAS  PubMed  Google Scholar 

  135. Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127:575–84.

    Article  CAS  PubMed  Google Scholar 

  136. Morrow DA, Scirica BM, Sabatine MS, de Lemos JA, Murphy SA, Jarolim P, et al. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (metabolic efficiency with ranolazine for less ischemia in non-ST elevation acute coronary-thrombolysis in myocardial infarction 36) trial. J Am Coll Cardiol. 2010;55:1189–96.

    Article  CAS  PubMed  Google Scholar 

  137. Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Lee S, Sander J, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 2013;1:115–22.

    Article  PubMed  Google Scholar 

  138. Rayner-Hartley E, Sedlak T. Ranolazine: a contemporary review. J Am Heart Assoc. 2016;5

  139. Maier LS, Sossalla S. The late Na current as a therapeutic target: where are we? J Mol Cell Cardiol. 2013;61:44–50.

    Article  CAS  PubMed  Google Scholar 

  140. Sossalla S, Maier LS. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes. Pharmacol Ther. 2012;133:311–23.

    Article  CAS  PubMed  Google Scholar 

  141. Yang P-C, Song Y, Giles WR, Horvath B, Chen-Izu Y, Belardinelli L, et al. A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na+ current. J Physiol. 2015;593:1429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang P-C, El-Bizri N, Romero L, Giles WR, Rajamani S, Belardinelli L, et al. A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. J Mol Cell Cardiol. 2016;99:151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baczko I, Liknes D, Yang W, Hamming KC, Searle G, Jaeger K, et al. Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation. Br J Pharmacol. 2014;171:92–106.

    Article  CAS  PubMed  Google Scholar 

  144. •• Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017;60:568–73. This paper makes the interesting observation that empagliflozin may have off-target effects on cardiac myocytes, reducing cytosolic sodium and increasing mitochondrial calcium. Whether this effect contributes to the beneficial effects of empagliflozin on the development of heart failure in patients with diabetes is currently still unresolved.

    Article  CAS  PubMed  Google Scholar 

  145. Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14:83–90.

    Article  CAS  PubMed  Google Scholar 

  146. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015;12:78–89.

    Article  CAS  PubMed  Google Scholar 

  147. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84.

    Article  CAS  PubMed  Google Scholar 

  148. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  149. Perrone-Filardi P, Avogaro A, Bonora E, Colivicchi F, Fioretto P, Maggioni A Pietro, et al. Mechanisms linking empagliflozin to cardiovascular and renal protection. Int. J. Cardiol. 2017;241:450–456.

  150. Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus. Circulation. 2016;134:752–72.

    Article  CAS  PubMed  Google Scholar 

  151. Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive MedicationNovelty and significance. Hypertension. 2016;68:1355–64.

    Article  CAS  PubMed  Google Scholar 

  152. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–8.

    Article  CAS  PubMed  Google Scholar 

  153. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.

    Article  PubMed  Google Scholar 

  154. Baartscheer A, Schumacher CA, van Borren MMGJ, Belterman CNW, Coronel R, Fiolet JWT. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res. 2003;57:1015–24.

    Article  CAS  PubMed  Google Scholar 

  155. Tanaka A, Shimabukuro M, Okada Y, Taguchi I, Yamaoka-Tojo M, Tomiyama H, et al. Rationale and design of a multicenter placebo-controlled double-blind randomized trial to evaluate the effect of empagliflozin on endothelial function: the EMBLEM trial. Cardiovasc Diabetol. 2017;16:48.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sobotta MC, Liou W, Stöcker S, Talwar D, Oehler M, Ruppert T, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol. 2015;11:64–70.

    Article  CAS  PubMed  Google Scholar 

  157. Wadley AJ, Aldred S, Coles SJ. An unexplored role for peroxiredoxin in exercise-induced redox signalling? Redox Biol. 2016;8:51–8.

    Article  CAS  PubMed  Google Scholar 

  158. Jarvis RM, Hughes SM, Ledgerwood EC. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med. 2012;53:1522–30.

    Article  CAS  PubMed  Google Scholar 

  159. Wood ZA, Schröder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.

    Article  CAS  PubMed  Google Scholar 

  160. Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br. J. Pharmacol. 2017; ahead of print doi:10.1111/bph.13825.

  161. Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion. 2017;33:72–83.

    Article  CAS  PubMed  Google Scholar 

  162. Boronat S, Domènech A, Hidalgo E. Proteomic characterization of reversible thiol oxidations in proteomes and proteins. Antioxid Redox Signal. 2017;26:329–44.

    Article  CAS  PubMed  Google Scholar 

  163. Duan J, Gaffrey MJ, Qian W-J. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol. BioSyst. 2017;13:816–829.

  164. Anderson ME. Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol. 2015;89:160–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Qin L, Reger AS, Guo E, Yang MP, Zwart P, Casteel DE, et al. Structures of cGMP-dependent protein kinase (PKG) Iα leucine zippers reveal an Interchain disulfide bond important for dimer stability. Biochemistry. 2015;54:4419–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schröder E, et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science. 2007;317:1393–7.

    Article  CAS  PubMed  Google Scholar 

  167. Nakamura T, Ranek MJ, Lee DI, Shalkey Hahn V, Kim C, Eaton P, et al. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. J Clin Invest. 2015;125:2468–72.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schröder E, Wait R, et al. Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem. 2006;281:21827–36.

    Article  CAS  PubMed  Google Scholar 

  169. Burgoyne JR, Rudyk O, Cho H, Prysyazhna O, Hathaway N, Weeks A, et al. Deficient angiogenesis in redox-dead Cys17Ser PKARIα knock-in mice. Nat Commun. 2015;6:7920.

    Article  CAS  PubMed  Google Scholar 

  170. Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS. Modeling local X-ROS and calcium signaling in the heart. Biophys J. 2015;109:2037–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie L-H, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res. 2013;112:651–63.

    Article  CAS  PubMed  Google Scholar 

  172. Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res. 2013;112:1135–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AD is supported by a research grant of the German Cardiac Society (DGK). CM is supported by the Deutsche Forschungsgemeinschaft (DFG; Heisenberg Professur; Sonderforschungsbereich SFB 894; research grant Ma 2528/7-1), Corona Stiftung and Deutsche Herzstiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Maack.

Ethics declarations

Conflict of Interest

Alexander Dietl declares no conflict of interest.

Christoph Maack has received speaker honoraria from Stealth Biotherapeutics, Boehringer Ingelheim and Berlin Chemie and has been an advisor to Stealth Biotherapeutics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Experimental Therapeutics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietl, A., Maack, C. Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Curr Heart Fail Rep 14, 338–349 (2017). https://doi.org/10.1007/s11897-017-0347-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0347-7

Keywords

Navigation