Skip to main content
Erschienen in: Current Hypertension Reports 6/2011

01.12.2011 | Mediators, Mechanisms, and Pathways in Tissue Injury (Heinrich Taegtmeyer and Steven A. Atlas, Section Editors)

Heart Failure Associated with Sunitinib: Lessons Learned from Animal Models

verfasst von: Colin F. Greineder, Sarah Kohnstamm, Bonnie Ky

Erschienen in: Current Hypertension Reports | Ausgabe 6/2011

Einloggen, um Zugang zu erhalten

Abstract

Sunitinib is a highly potent, multitargeted anticancer agent. However, there is growing clinical evidence that sunitinib induces cardiac dysfunction. Disruption of multiple signaling pathways, which are important in the maintenance of adult cardiac function, is likely to result in cardiovascular toxicity. Basic and translational evidence implicates a potential role for specific growth factor signaling pathways. This review discusses the relevant translational data from animal models of heart failure, focusing on three key pathways that are inhibited by sunitinib: AMP-activated protein kinase (AMPK), platelet-derived growth factor receptors (PDGFRs), and the vascular endothelial growth factor receptors (VEGFRs) 1, 2, and 3. We hypothesize that disruption of these pathways by sunitinib results in cardiotoxicity, and present direct and indirect evidence to support the notion that sunitinib-induced cardiac dysfunction likely involves a variety of molecular mechanisms that are critical for cardiac homeostasis.
Literatur
1.
Zurück zum Zitat Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.PubMedCrossRef Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.PubMedCrossRef
4.
Zurück zum Zitat Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.PubMedCrossRef Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.PubMedCrossRef
5.
Zurück zum Zitat Desai J, Shankar S, Heinrich MC, et al. Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res. 2007;13(18 Pt 1):5398–405.PubMedCrossRef Desai J, Shankar S, Heinrich MC, et al. Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res. 2007;13(18 Pt 1):5398–405.PubMedCrossRef
6.
Zurück zum Zitat • Cheng H, Force T. Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 2010;106(1):21–34. This is a comprehensive review of the potential biologic mechanisms of current targeted cancer therapies. PubMedCrossRef • Cheng H, Force T. Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 2010;106(1):21–34. This is a comprehensive review of the potential biologic mechanisms of current targeted cancer therapies. PubMedCrossRef
7.
Zurück zum Zitat Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.PubMedCrossRef Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.PubMedCrossRef
9.
Zurück zum Zitat Telli ML, Witteles RM, Fisher GA, et al. Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann Oncol. 2008;19(9):1613–8.PubMedCrossRef Telli ML, Witteles RM, Fisher GA, et al. Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann Oncol. 2008;19(9):1613–8.PubMedCrossRef
10.
Zurück zum Zitat Di Lorenzo G, Autorino R, Bruni G, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol. 2009;20(9):1535–42.PubMedCrossRef Di Lorenzo G, Autorino R, Bruni G, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol. 2009;20(9):1535–42.PubMedCrossRef
11.
Zurück zum Zitat Khakoo AY, Kassiotis CM, Tannir N, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112(11):2500–8.PubMedCrossRef Khakoo AY, Kassiotis CM, Tannir N, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112(11):2500–8.PubMedCrossRef
12.
Zurück zum Zitat • Kerkela R, Woulfe KC, Durand JB, et al. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci 2009;2(1):15–25. This is one of the few studies defining the effects of administering sunitinib to animals. PubMedCrossRef • Kerkela R, Woulfe KC, Durand JB, et al. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci 2009;2(1):15–25. This is one of the few studies defining the effects of administering sunitinib to animals. PubMedCrossRef
13.
Zurück zum Zitat Will Y, Dykens JA, Nadanaciva S, et al. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci. 2008;106(1):153–61.PubMedCrossRef Will Y, Dykens JA, Nadanaciva S, et al. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci. 2008;106(1):153–61.PubMedCrossRef
14.
Zurück zum Zitat Hasinoff BB, Patel D, O’Hara KA. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol. 2008;74(6):1722–8.PubMedCrossRef Hasinoff BB, Patel D, O’Hara KA. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol. 2008;74(6):1722–8.PubMedCrossRef
15.
Zurück zum Zitat Arad M, Seidman CE, Seidman JG. AMP-activated protein kinase in the heart: role during health and disease. Circ Res. 2007;100(4):474–88.PubMedCrossRef Arad M, Seidman CE, Seidman JG. AMP-activated protein kinase in the heart: role during health and disease. Circ Res. 2007;100(4):474–88.PubMedCrossRef
16.
Zurück zum Zitat Gruber HE, Hoffer ME, McAllister DR, et al. Increased adenosine concentration in blood from ischemic myocardium by AICA riboside. Effects on flow, granulocytes, and injury. Circulation. 1989;80(5):1400–11.PubMedCrossRef Gruber HE, Hoffer ME, McAllister DR, et al. Increased adenosine concentration in blood from ischemic myocardium by AICA riboside. Effects on flow, granulocytes, and injury. Circulation. 1989;80(5):1400–11.PubMedCrossRef
17.
Zurück zum Zitat Terai K, Hiramoto Y, Masaki M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25(21):9554–75.PubMedCrossRef Terai K, Hiramoto Y, Masaki M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25(21):9554–75.PubMedCrossRef
18.
Zurück zum Zitat • Zhang P, Hu X, Xu X, et al. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension 2008;52(5):918–24. This is a key article defining the role of AMPK in the cardiovascular system. PubMedCrossRef • Zhang P, Hu X, Xu X, et al. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension 2008;52(5):918–24. This is a key article defining the role of AMPK in the cardiovascular system. PubMedCrossRef
19.
Zurück zum Zitat Force T, Kerkela R. Cardiotoxicity of the new cancer therapeutics–mechanisms of, and approaches to, the problem. Drug Discov Today. 2008;13(17–18):778–84.PubMedCrossRef Force T, Kerkela R. Cardiotoxicity of the new cancer therapeutics–mechanisms of, and approaches to, the problem. Drug Discov Today. 2008;13(17–18):778–84.PubMedCrossRef
20.
Zurück zum Zitat Edelberg JM, Lee SH, Kaur M, et al. Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation. 2002;105(5):608–13.PubMedCrossRef Edelberg JM, Lee SH, Kaur M, et al. Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation. 2002;105(5):608–13.PubMedCrossRef
21.
Zurück zum Zitat Hsieh PC, MacGillivray C, Gannon J, et al. Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation. 2006;114(7):637–44.PubMedCrossRef Hsieh PC, MacGillivray C, Gannon J, et al. Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation. 2006;114(7):637–44.PubMedCrossRef
22.
Zurück zum Zitat • Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 2010;120(2):472–84. This is an outstanding study of the role of PDGFR-β in the maintenance of cardiac function. PubMedCrossRef • Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 2010;120(2):472–84. This is an outstanding study of the role of PDGFR-β in the maintenance of cardiac function. PubMedCrossRef
23.
Zurück zum Zitat Hsieh PC, Davis ME, Lisowski LK, et al. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51–66.PubMedCrossRef Hsieh PC, Davis ME, Lisowski LK, et al. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51–66.PubMedCrossRef
24.
25.
26.
Zurück zum Zitat Abraham D, Hofbauer R, Schafer R, et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res. 2000;87(8):644–7.PubMed Abraham D, Hofbauer R, Schafer R, et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res. 2000;87(8):644–7.PubMed
27.
Zurück zum Zitat Izumiya Y, Shiojima I, Sato K, et al. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension. 2006;47(5):887–93.PubMedCrossRef Izumiya Y, Shiojima I, Sato K, et al. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension. 2006;47(5):887–93.PubMedCrossRef
28.
Zurück zum Zitat • Pepe M, Mamdani M, Zentilin L, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 2010;106(12):1893–903. This excellent study describes the effect of VEGF-B delivery on the nonischemic cardiomyopathy phenotype. PubMedCrossRef • Pepe M, Mamdani M, Zentilin L, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 2010;106(12):1893–903. This excellent study describes the effect of VEGF-B delivery on the nonischemic cardiomyopathy phenotype. PubMedCrossRef
29.
Zurück zum Zitat Zhao Q, Ishibashi M, Hiasa K, et al. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension. 2004;44(3):264–70.PubMedCrossRef Zhao Q, Ishibashi M, Hiasa K, et al. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension. 2004;44(3):264–70.PubMedCrossRef
30.
Zurück zum Zitat Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.PubMedCrossRef Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.PubMedCrossRef
31.
Zurück zum Zitat Belgore FM, Blann AD, Li-Saw-Hee FL, et al. Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension. Am J Cardiol. 2001;87(6):805–7. A9.PubMedCrossRef Belgore FM, Blann AD, Li-Saw-Hee FL, et al. Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension. Am J Cardiol. 2001;87(6):805–7. A9.PubMedCrossRef
32.
Zurück zum Zitat Walsh K, Shiojima I. Cardiac growth and angiogenesis coordinated by intertissue interactions. J Clin Invest. 2007;117(11):3176–9.PubMedCrossRef Walsh K, Shiojima I. Cardiac growth and angiogenesis coordinated by intertissue interactions. J Clin Invest. 2007;117(11):3176–9.PubMedCrossRef
33.
Zurück zum Zitat Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.PubMed Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.PubMed
34.
Zurück zum Zitat Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.PubMedCrossRef Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.PubMedCrossRef
35.
Zurück zum Zitat Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001;98(10):5780–5.PubMedCrossRef Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001;98(10):5780–5.PubMedCrossRef
36.
Zurück zum Zitat Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24(5):1467–78.PubMedCrossRef Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24(5):1467–78.PubMedCrossRef
Metadaten
Titel
Heart Failure Associated with Sunitinib: Lessons Learned from Animal Models
verfasst von
Colin F. Greineder
Sarah Kohnstamm
Bonnie Ky
Publikationsdatum
01.12.2011
Verlag
Current Science Inc.
Erschienen in
Current Hypertension Reports / Ausgabe 6/2011
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-011-0225-8

Weitere Artikel der Ausgabe 6/2011

Current Hypertension Reports 6/2011 Zur Ausgabe

Mediators, Mechanisms, and Pathways in Tissue Injury (Heinrich Taegtmeyer and Steven Atlas, Section Editors)

Effects of Relaxin on Arterial Dilation, Remodeling, and Mechanical Properties

Mediators, Mechanisms in Tissue Injury (Heinrich Taegtmeyer, Steven A. Atlas, Section Editors)

Sunitinib, Hypertension, and Heart Failure: A Model for Kinase Inhibitor-Mediated Cardiotoxicity

Mediators, Mechanisms in Tissue Injury (Heinrich Taegtmeyer, Steven Atlas, Section Editors)

The Roles of Integrins in Mediating the Effects of Mechanical Force and Growth Factors on Blood Vessels in Hypertension

Special Situations in the Management of Hypertension (Theodore Kotchen, Section Editor)

Does Sustained Weight Loss Reverse the Metabolic Syndrome?

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.