Skip to main content
Erschienen in: Current Hypertension Reports 2/2018

01.02.2018 | Pathogenesis of Hypertension (W Elliott and R Santos, Section Editors)

Angiotensin-(1–7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis

verfasst von: Fernando Pedro de Souza-Neto, Melissa Carvalho Santuchi, Mario de Morais e Silva, Maria José Campagnole-Santos, Rafaela Fernandes da Silva

Erschienen in: Current Hypertension Reports | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The purpose of this review was to summarize the current knowledge on the role of angiotensin-(1–7) [Ang-(1–7)] and alamandine in experimental hypertension and atherosclerosis.

Recent Findings

The renin-angiotensin system (RAS) is a very complex system, composed of a cascade of enzymes, peptides, and receptors, known to be involved in the pathogenesis of hypertension and atherosclerosis. Ang-(1–7), identified and characterized in 1987, and alamandine, discovered 16 years after, are the newest two main effector molecules from the RAS, protecting the vascular system against hypertension and atherosclerosis.

Summary

While the beneficial effects of Ang-(1–7) have been widely studied in several experimental models of hypertension, much less studies were performed in experimental models of atherosclerosis. Alamandine has shown similar vascular effects to Ang-(1–7), namely, endothelial-dependent vasorelaxation mediated by nitric oxide and hypotensive effects in experimental hypertension. There are few studies on the effects of alamandine on atherosclerosis.
Literatur
3.
Zurück zum Zitat Tunon J, et al. Common pathways of hypercholesterolemia and hypertension leading to atherothrombosis: the need for a global approach in the management of cardiovascular risk factors. Vasc Health Risk Manag. 2007;3(4):521–6.PubMedPubMedCentral Tunon J, et al. Common pathways of hypercholesterolemia and hypertension leading to atherothrombosis: the need for a global approach in the management of cardiovascular risk factors. Vasc Health Risk Manag. 2007;3(4):521–6.PubMedPubMedCentral
11.
Zurück zum Zitat •• Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–1111. This paper reports the discovery and characterization of alamandine, providing first experimental data on its biological activity, biochemical profile and interaction with its receptor, MrgD. https://doi.org/10.1161/CIRCRESAHA.113.301077.PubMedCrossRef •• Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–1111. This paper reports the discovery and characterization of alamandine, providing first experimental data on its biological activity, biochemical profile and interaction with its receptor, MrgD. https://​doi.​org/​10.​1161/​CIRCRESAHA.​113.​301077.PubMedCrossRef
16.
Zurück zum Zitat Gonzalez AA, et al. Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertens. 2011;57(3):594–99.CrossRef Gonzalez AA, et al. Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertens. 2011;57(3):594–99.CrossRef
26.
Zurück zum Zitat Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol. 2001;87(8A):25C–32C.PubMedCrossRef Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol. 2001;87(8A):25C–32C.PubMedCrossRef
29.
Zurück zum Zitat Campagnole-Santos MJ, et al. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys. 1989;257(1 Pt 2):H324–9. Campagnole-Santos MJ, et al. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys. 1989;257(1 Pt 2):H324–9.
30.
Zurück zum Zitat •• Chappell MC, Brosnihan KB, Diz DI, Ferrario CM. Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem. 1989;264(28):16518–23. Using radioimmunoassays and high-performance liquid chromatography, the authors described for first time Ang-(1–7) as an endogenous product of the renin-angiotensin system, and detected in brain, adrenal and rat plasma.PubMed •• Chappell MC, Brosnihan KB, Diz DI, Ferrario CM. Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem. 1989;264(28):16518–23. Using radioimmunoassays and high-performance liquid chromatography, the authors described for first time Ang-(1–7) as an endogenous product of the renin-angiotensin system, and detected in brain, adrenal and rat plasma.PubMed
33.
35.
Zurück zum Zitat McCollum LT, Gallagher PE, Ann Tallant E. Angiotensin-(1–7) attenuatesangiotensin II-induced cardiac remodeling associated with upregulation of dual-specificityphosphatase 1. Am J Physiol Heart Circ Physiol. 2012;302(3):H801–H810.PubMedCrossRef McCollum LT, Gallagher PE, Ann Tallant E. Angiotensin-(1–7) attenuatesangiotensin II-induced cardiac remodeling associated with upregulation of dual-specificityphosphatase 1. Am J Physiol Heart Circ Physiol. 2012;302(3):H801–H810.PubMedCrossRef
36.
38.
Zurück zum Zitat • Gembardt F, Grajewski S, Vahl M, Schultheiss HP, Walther T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem. 2008;319(1–2):115–123. This article summarizes the findings of the new components of the renin-angiotensin system with homologous sequences to Ang-(1–7) and how they interact with the Mas receptor. https://doi.org/10.1007/s11010-008-9884-4.PubMedCrossRef • Gembardt F, Grajewski S, Vahl M, Schultheiss HP, Walther T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem. 2008;319(1–2):115–123. This article summarizes the findings of the new components of the renin-angiotensin system with homologous sequences to Ang-(1–7) and how they interact with the Mas receptor. https://​doi.​org/​10.​1007/​s11010-008-9884-4.PubMedCrossRef
40.
Zurück zum Zitat Shi Y, Lo CS, Padda R, Abdo S, Chenier I, Filep JG, et al. Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci (Lond). 2015;128(10):649–63. https://doi.org/10.1042/CS20140329.CrossRef Shi Y, Lo CS, Padda R, Abdo S, Chenier I, Filep JG, et al. Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci (Lond). 2015;128(10):649–63. https://​doi.​org/​10.​1042/​CS20140329.CrossRef
48.
Zurück zum Zitat • Guimaraes PS, Oliveira MF, Braga JF, Nadu AP, Schreihofer A, Santos RAS, et al. Increasing angiotensin-(1–7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats. Hypertension. 2014;63(5):1078–1085. The authors demonstrated that the chronic increase of Ang-(1–7) levels in the brain promotes cardiovascular and metabolic effects that protect animals with fructose-induced metabolic syndrome. https://doi.org/10.1161/HYPERTENSIONAHA.113.01847.PubMedCrossRef • Guimaraes PS, Oliveira MF, Braga JF, Nadu AP, Schreihofer A, Santos RAS, et al. Increasing angiotensin-(1–7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats. Hypertension. 2014;63(5):1078–1085. The authors demonstrated that the chronic increase of Ang-(1–7) levels in the brain promotes cardiovascular and metabolic effects that protect animals with fructose-induced metabolic syndrome. https://​doi.​org/​10.​1161/​HYPERTENSIONAHA.​113.​01847.PubMedCrossRef
50.
Zurück zum Zitat •• Santiago NM, Guimaraes PS, Sirvente RA, Oliveira LAM, Irigoyen MC, Santos RAS, et al. Lifetime overproduction of circulating Angiotensin-(1–7) attenuates deoxycorticosterone acetate-salt hypertension-induced cardiac dysfunction and remodeling. Hypertension. 2010;55(4):889–896. In this work, it was demonstrated that animals with lifetime increase in circulating levels of Ang-(1–7) are protected against the damage caused by DOCA-salt hypertension model. https://doi.org/10.1161/HYPERTENSIONAHA.110.149815.PubMedCrossRef •• Santiago NM, Guimaraes PS, Sirvente RA, Oliveira LAM, Irigoyen MC, Santos RAS, et al. Lifetime overproduction of circulating Angiotensin-(1–7) attenuates deoxycorticosterone acetate-salt hypertension-induced cardiac dysfunction and remodeling. Hypertension. 2010;55(4):889–896. In this work, it was demonstrated that animals with lifetime increase in circulating levels of Ang-(1–7) are protected against the damage caused by DOCA-salt hypertension model. https://​doi.​org/​10.​1161/​HYPERTENSIONAHA.​110.​149815.PubMedCrossRef
57.
Zurück zum Zitat •• de Almeida PW, et al. Beneficial effects of angiotensin-(1–7) against deoxycorticosterone acetate-induced diastolic dysfunction occur independently of changes in blood pressure. Hypertension. 2015;66(2):389–395. In this work the authors demonstrated that the signaling pathways involved in the cardioprotective effects of Ang-(1–7) are activated even under conditions of high blood pressure. https://doi.org/10.1161/HYPERTENSIONAHA.114.04893.PubMedCrossRef •• de Almeida PW, et al. Beneficial effects of angiotensin-(1–7) against deoxycorticosterone acetate-induced diastolic dysfunction occur independently of changes in blood pressure. Hypertension. 2015;66(2):389–395. In this work the authors demonstrated that the signaling pathways involved in the cardioprotective effects of Ang-(1–7) are activated even under conditions of high blood pressure. https://​doi.​org/​10.​1161/​HYPERTENSIONAHA.​114.​04893.PubMedCrossRef
61.
Zurück zum Zitat • Guo L, Yin A, Zhang Q, Zhong T, O’Rourke ST, Sun C. Angiotensin-(1–7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Am J Physiol Heart Circ Physiol. 2017;312(5):H980–H991. In this paper it was demonstrated that Ang-(1–7) significantly attenuates Ang II-induced cardiac hypertrophy and perivascular fibrosis through of SOD2 expression via stimulation of Sirt3-dependent deacetylation of FoxO3a in cardiomyocytes. https://doi.org/10.1152/ajpheart.00768.2016.PubMedCrossRef • Guo L, Yin A, Zhang Q, Zhong T, O’Rourke ST, Sun C. Angiotensin-(1–7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Am J Physiol Heart Circ Physiol. 2017;312(5):H980–H991. In this paper it was demonstrated that Ang-(1–7) significantly attenuates Ang II-induced cardiac hypertrophy and perivascular fibrosis through of SOD2 expression via stimulation of Sirt3-dependent deacetylation of FoxO3a in cardiomyocytes. https://​doi.​org/​10.​1152/​ajpheart.​00768.​2016.PubMedCrossRef
62.
63.
Zurück zum Zitat •• Gomes ER, et al. Angiotensin-(1–7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension. 2010;55(1):153–160. This paper demonstrated that the protective NO/cGMP signaling pathway is activated by Ang-(1–7) on Ang II-induced cardiomyocyte remodeling. https://doi.org/10.1161/HYPERTENSIONAHA.109.143255.PubMedCrossRef •• Gomes ER, et al. Angiotensin-(1–7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension. 2010;55(1):153–160. This paper demonstrated that the protective NO/cGMP signaling pathway is activated by Ang-(1–7) on Ang II-induced cardiomyocyte remodeling. https://​doi.​org/​10.​1161/​HYPERTENSIONAHA.​109.​143255.PubMedCrossRef
66.
Zurück zum Zitat • Regenhardt RW, Mecca AP, Desland F, Ritucci-Chinni PF, Ludin JA, Greenstein D, et al. Centrally administered angiotensin-(1–7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp Physiol. 2014;99(2):442–453. These authors showed the beneficial effects of central administration of Ang-(1–7) on stroke-prone spontaneously hypertensive rats, a haemorrhagic stroke model, demonstrating its therapeutic potential in this disease. https://doi.org/10.1113/expphysiol.2013.075242.PubMedCrossRef • Regenhardt RW, Mecca AP, Desland F, Ritucci-Chinni PF, Ludin JA, Greenstein D, et al. Centrally administered angiotensin-(1–7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp Physiol. 2014;99(2):442–453. These authors showed the beneficial effects of central administration of Ang-(1–7) on stroke-prone spontaneously hypertensive rats, a haemorrhagic stroke model, demonstrating its therapeutic potential in this disease. https://​doi.​org/​10.​1113/​expphysiol.​2013.​075242.PubMedCrossRef
75.
Zurück zum Zitat • Anitschkow N, Chalatow S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg Pathol Pathol Anat. 1913;24:1–9. First published paper on animal model for atherosclerosis, from which further investigation emerged and, thus, helped to conceive new approaches in animal models, to improve experimental designs and to elucidate its pathophysiology. • Anitschkow N, Chalatow S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg Pathol Pathol Anat. 1913;24:1–9. First published paper on animal model for atherosclerosis, from which further investigation emerged and, thus, helped to conceive new approaches in animal models, to improve experimental designs and to elucidate its pathophysiology.
82.
Zurück zum Zitat Swales JD, Samani NJ. Vascular RAA system. J Hum Hypertens. 1993;7(Suppl 2):S3–6.PubMed Swales JD, Samani NJ. Vascular RAA system. J Hum Hypertens. 1993;7(Suppl 2):S3–6.PubMed
86.
Zurück zum Zitat •• Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE. Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2010;30(8):1606–1613. First published paper on the role of Ang-(1–7) in experimental atherosclerosis using ApoE knockout mice model, showing that the renin-angiotensin system is able to delay the progression of atherosclerosis. https://doi.org/10.1161/ATVBAHA.110.204453.PubMedCrossRef •• Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE. Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2010;30(8):1606–1613. First published paper on the role of Ang-(1–7) in experimental atherosclerosis using ApoE knockout mice model, showing that the renin-angiotensin system is able to delay the progression of atherosclerosis. https://​doi.​org/​10.​1161/​ATVBAHA.​110.​204453.PubMedCrossRef
92.
Zurück zum Zitat •• Fraga-Silva RA, Savergnini SQ, Montecucco F, Nencioni A, Caffa I, Soncini D, et al. Treatment with angiotensin-(1–7) reduces inflammation in carotid atherosclerotic plaques. Thromb Haemost. 2014;111(4):736–747. This paper delineates the effects of Ang-(1–7)/HPβCD orally treated ApoE knockout mice on different shear stress prone regions, adding new data about Ang-(1–7) mechanisms in atherosclerotic plaques. https://doi.org/10.1160/TH13-06-0448.PubMedCrossRef •• Fraga-Silva RA, Savergnini SQ, Montecucco F, Nencioni A, Caffa I, Soncini D, et al. Treatment with angiotensin-(1–7) reduces inflammation in carotid atherosclerotic plaques. Thromb Haemost. 2014;111(4):736–747. This paper delineates the effects of Ang-(1–7)/HPβCD orally treated ApoE knockout mice on different shear stress prone regions, adding new data about Ang-(1–7) mechanisms in atherosclerotic plaques. https://​doi.​org/​10.​1160/​TH13-06-0448.PubMedCrossRef
93.
Zurück zum Zitat Silva AR, Aguilar EC, Alvarez-Leite JI, da Silva RF, Arantes RME, Bader M, et al. Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice. Am J Phys Regul Integr Comp Phys. 2013;305(11):R1323–30. https://doi.org/10.1152/ajpregu.00249.2013. Silva AR, Aguilar EC, Alvarez-Leite JI, da Silva RF, Arantes RME, Bader M, et al. Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice. Am J Phys Regul Integr Comp Phys. 2013;305(11):R1323–30. https://​doi.​org/​10.​1152/​ajpregu.​00249.​2013.
94.
Zurück zum Zitat • Hammer A, Yang G, Friedrich J, Kovacs A, Lee DH, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113(49):14109–14114. A new approach, by combining knockout models (Mas receptor and ApoE), allowed further investigation on the role of Mas receptor in sponteneously atherosclerotic mice, which lack ApoE expression, as well as the dynamics of these two important components in ahterosclerosis. https://doi.org/10.1073/pnas.1612668113.PubMedPubMedCentralCrossRef • Hammer A, Yang G, Friedrich J, Kovacs A, Lee DH, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113(49):14109–14114. A new approach, by combining knockout models (Mas receptor and ApoE), allowed further investigation on the role of Mas receptor in sponteneously atherosclerotic mice, which lack ApoE expression, as well as the dynamics of these two important components in ahterosclerosis. https://​doi.​org/​10.​1073/​pnas.​1612668113.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Toton-Zuranska J, Gajda M, Pyka-Fosciak G, Kus K, Pawlowska M, Niepsuj A, et al. AVE 0991-angiotensin-(1-7) receptor agonist, inhibits atherogenesis in apoE-knockout mice. J Physiol Pharmacol. 2010;61(2):181–3.PubMed Toton-Zuranska J, Gajda M, Pyka-Fosciak G, Kus K, Pawlowska M, Niepsuj A, et al. AVE 0991-angiotensin-(1-7) receptor agonist, inhibits atherogenesis in apoE-knockout mice. J Physiol Pharmacol. 2010;61(2):181–3.PubMed
99.
Zurück zum Zitat Jawien J, Toton-Zuranska J, Kus K, Pawlowska M, Olszanecki R, Korbut R. The effect of AVE 0991, nebivolol and doxycycline on inflammatory mediators in an apoE-knockout mouse model of atherosclerosis. Med Sci Monit. 2012;18(10):Br389–93.PubMedPubMedCentralCrossRef Jawien J, Toton-Zuranska J, Kus K, Pawlowska M, Olszanecki R, Korbut R. The effect of AVE 0991, nebivolol and doxycycline on inflammatory mediators in an apoE-knockout mouse model of atherosclerosis. Med Sci Monit. 2012;18(10):Br389–93.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Olszanecki R, Suski M, Gebska A, Toton-Zuranska J, Kus K, Madej J, et al. The influence of angiotensin-(1-7) peptidomimetic (AVE 0991) and nebivolol on angiotensin I metabolism in aorta of apoE-knockout mice. J Physiol Pharmacol. 2013;64(3):317–20.PubMed Olszanecki R, Suski M, Gebska A, Toton-Zuranska J, Kus K, Madej J, et al. The influence of angiotensin-(1-7) peptidomimetic (AVE 0991) and nebivolol on angiotensin I metabolism in aorta of apoE-knockout mice. J Physiol Pharmacol. 2013;64(3):317–20.PubMed
101.
Zurück zum Zitat Jawien J, Toton-Zuranska J, Gajda M, Niepsuj A, Gebska A, Kus K, et al. Angiotensin-(1-7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J Physiol Pharmacol. 2012;63(1):77–85.PubMed Jawien J, Toton-Zuranska J, Gajda M, Niepsuj A, Gebska A, Kus K, et al. Angiotensin-(1-7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J Physiol Pharmacol. 2012;63(1):77–85.PubMed
102.
Zurück zum Zitat • Skiba DS, et al. Anti-atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2016; Newest paper about an Ang-(1–7) analogue, AVE0991, and its role in atherosclerosis. This paper comprises previously published works on that issue and provides further information on mechanisms underlying the role of AVE0991. • Skiba DS, et al. Anti-atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2016; Newest paper about an Ang-(1–7) analogue, AVE0991, and its role in atherosclerosis. This paper comprises previously published works on that issue and provides further information on mechanisms underlying the role of AVE0991.
104.
Zurück zum Zitat •• Da Silva AR, Lenglet S, Carbone F, Burger F, Roth A, Liberale L, et al. Alamandine abrogates neutrophil degranulation in atherosclerotic mice. Eur J Clin Investig. 2017;47(2):117–128. First published paper on the role of alamandine in experimental atherosclerosis, extending the anti-atherosclerotic effects of the protective arm of the renin-angiotensin system to its newest characterized component. https://doi.org/10.1111/eci.12708.CrossRef •• Da Silva AR, Lenglet S, Carbone F, Burger F, Roth A, Liberale L, et al. Alamandine abrogates neutrophil degranulation in atherosclerotic mice. Eur J Clin Investig. 2017;47(2):117–128. First published paper on the role of alamandine in experimental atherosclerosis, extending the anti-atherosclerotic effects of the protective arm of the renin-angiotensin system to its newest characterized component. https://​doi.​org/​10.​1111/​eci.​12708.CrossRef
105.
Zurück zum Zitat • Uchiyama T, Okajima F, Mogi C, Tobo A, Tomono S, Sato K. Alamandine reduces leptin expression through the c-Src/p38 MAP kinase pathway in adipose tissue. PLoS One. 2017;12(6):e0178769. This paper brings interesting data on the effects of alamandine on plasminogen activator inhibitor-1 (PAI-1), which is a pro-atherogenic protein. However, it leaves unanswered questions whether alamandine is a pro- or an anti-atherogenic species. https://doi.org/10.1371/journal.pone.0178769.PubMedPubMedCentralCrossRef • Uchiyama T, Okajima F, Mogi C, Tobo A, Tomono S, Sato K. Alamandine reduces leptin expression through the c-Src/p38 MAP kinase pathway in adipose tissue. PLoS One. 2017;12(6):e0178769. This paper brings interesting data on the effects of alamandine on plasminogen activator inhibitor-1 (PAI-1), which is a pro-atherogenic protein. However, it leaves unanswered questions whether alamandine is a pro- or an anti-atherogenic species. https://​doi.​org/​10.​1371/​journal.​pone.​0178769.PubMedPubMedCentralCrossRef
Metadaten
Titel
Angiotensin-(1–7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis
verfasst von
Fernando Pedro de Souza-Neto
Melissa Carvalho Santuchi
Mario de Morais e Silva
Maria José Campagnole-Santos
Rafaela Fernandes da Silva
Publikationsdatum
01.02.2018
Verlag
Springer US
Erschienen in
Current Hypertension Reports / Ausgabe 2/2018
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-018-0798-6

Weitere Artikel der Ausgabe 2/2018

Current Hypertension Reports 2/2018 Zur Ausgabe

Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)

Integrative Physiological Aspects of Brain RAS in Hypertension

Mechanisms of Hypertension (M Weir, Section Editor)

Pros and Cons of Intensive Systolic Blood Pressure Lowering

Hypertension and the Brain (R Wainford, Section Editor)

Vasopressin, Central Autonomic Control and Blood Pressure Regulation

Hypertension and the Brain (R Wainford, Section Editor)

Hypothalamic Ion Channels in Hypertension

Hypertension and Obesity (E Reisin, Section Editor)

The Global Epidemic of the Metabolic Syndrome

Hypertension and Emergency Medicine (T Rainer and P Levy, Section Editors)

New Developments in Hypertensive Encephalopathy

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.