Skip to main content

Advertisement

Log in

The Role of Osteocytes in Age-Related Bone Loss

  • Osteocytes (T Bellido and J Klein-Nulend, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The decrease in bone mass and strength during aging has multiple causes. Osteocytes are long-lived cells within the bone matrix that perform a variety of functions, including the control of bone remodeling. Because of their longevity, osteocytes are more likely than osteoclasts or osteoblasts to accumulate molecular damage over time. Osteocytes utilize quality-control pathways like autophagy to remove damaged organelles and macromolecules, and thereby maintain function. When the damage is excessive, cell death pathways such as apoptosis minimize the impact of potential osteocyte dysfunction on the skeleton. The goal of this review is to discuss how dysregulation of these pathways in osteocytes may contribute to the decline in bone mass and strength with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002;30(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  2. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.

    CAS  PubMed  Google Scholar 

  3. Palumbo C, Cavani F, Sena P, Benincasa M, Ferretti M. Osteocyte apoptosis and absence of bone remodeling in human auditory ossicles and scleral ossicles of lower vertebrates: a mere coincidence or linked processes? Calcif Tissue Int. 2012;90(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    Article  CAS  PubMed  Google Scholar 

  5. Jilka RL, O'Brien CA, Bartell SM, Weinstein RS, Manolagas SC. Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res. 2010;25(11):2427–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12(9):1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4.

    Article  CAS  PubMed  Google Scholar 

  9. Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, et al. Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One. 2015;10(9):e0138189. Uses a genetic approach to show that osteocytes produce the RANKL needed for osteoclastogenesis in murine trabecular bone.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW. Activation of receptor activator of NF-{kappa}B ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galli C, Zella LA, Fretz JA, Fu Q, Pike JW, Weinstein RS, et al. Targeted deletion of a distant transcriptional enhancer of the receptor activator of nuclear factor-kappaB ligand gene reduces bone remodeling and increases bone mass. Endocrinology. 2008;149(1):146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu Q, Manolagas SC, O'Brien CA. Parathyroid hormone controls receptor activator of NF-{kappa}B ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol. 2006;26(17):6453–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–22. Showed that dying osteocytes signal neighboring viable osteocytes to increased synthesis of RANKL.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang M, Vanhouten JN, Nasiri AR, Tommasini SM, Broadus AE. Periosteal PTHrP regulates cortical bone modeling during linear growth in mice. J Anat. 2014;225(1):71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brunkow ME, Gardner JC, Van NJ, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balemans W, Patel N, Ebeling M, Van HE, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24(10):1651–61.

    Article  CAS  PubMed  Google Scholar 

  19. Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;Jun 20.

  20. Ominsky MS, Niu QT, Li C, Li X, Ke HZ. Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res. 2014;29(6):1424–30.

    Article  CAS  PubMed  Google Scholar 

  21. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75.

    Article  CAS  PubMed  Google Scholar 

  22. Kwon RY, Meays DR, Meilan AS, Jones J, Miramontes R, Kardos N, et al. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. PLoS One. 2012;7(3):e33336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, et al. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 2011;25(7):2418–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, et al. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci. 2012;125(Pt 8):1945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone. 2008;42(1):172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.

    Article  CAS  PubMed  Google Scholar 

  27. Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50(1):209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown EM, Juppner H. Parathyroid hormone: synthesis, secretion, and action. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Sixthth ed. Washington, D.C: American Society for Bone and Mineral Research; 2006. p. 90–9.

    Google Scholar 

  29. Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, et al. Catabolic effects of continuous human PTH (1--38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology. 2001;142(9):4047–54.

    CAS  PubMed  Google Scholar 

  30. Onal M, Galli C, Fu Q, Xiong J, Weinstein RS, Manolagas SC, et al. The RANKL distal control region is required for the increase in RANKL expression, but not the bone loss, associated with hyperparathyroidism or lactation in adult mice. Mol Endocrinol. 2012;26(2):341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, et al. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013;288(28):20122–34. Shows that direct actions of PTH on osteocytes regulate bone formation and resorption.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Powell Jr WF, Barry KJ, Tulum I, Kobayashi T, Harris SE, Bringhurst FR, et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J Endocrinol. 2011;209(1):21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Belanger LF. Osteocytic osteolysis. Calcif Tissue Res. 1969;4(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  34. Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27(5):1018–29. Shows that osteocytes control their lacunar space.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell … more. Endocr Rev. 2013;34(5):658–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farrow EG, Summers LJ, Schiavi SC, McCormick JA, Ellison DH, White KE. Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation. J Endocrinol. 2010;207(1):67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch. 2003;446(5):585–92.

    Article  CAS  PubMed  Google Scholar 

  38. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35.

    Article  CAS  PubMed  Google Scholar 

  39. Bai XY, Miao DS, Li JR, Goltzman D, Karaplis AC. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology. 2004;145(11):5269–79.

    Article  CAS  PubMed  Google Scholar 

  40. Hui SL, Slemenda CW, Johnston Jr CC. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81(6):1804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khosla S. Pathogenesis of age-related bone loss in humans. J Gerontol Ser A Biol Med Sci. 2013;68(10):1226–35.

    Article  CAS  Google Scholar 

  43. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375(9727):1729–36.

    Article  PubMed  Google Scholar 

  44. Nicks KM, Amin S, Atkinson EJ, Riggs BL, Melton III LJ, Khosla S. Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res. 2012;27(3):637–44.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bala Y, Zebaze R, Seeman E. Role of cortical bone in bone fragility. Curr Opin Rheumatol. 2015;27(4):406–13. Provides a comprehensive view of the origins and significance of cortical porosity in aging humans.

    Article  PubMed  Google Scholar 

  46. Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM. Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res. 1996;11(12):1967–75.

    Article  CAS  PubMed  Google Scholar 

  47. Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech. 1988;21(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  48. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282(37):27285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22(8):1197–207.

    Article  PubMed  Google Scholar 

  50. Vanhooren V, Libert C. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev. 2013;12(1):8–21.

    Article  PubMed  Google Scholar 

  51. Weiss A, Arbell I, Steinhagen-Thiessen E, Silbermann M. Structural changes in aging bone: osteopenia in the proximal femurs of female mice. Bone. 1991;12(3):165–72.

    Article  CAS  PubMed  Google Scholar 

  52. Silbermann M, Weiss A, Reznick AZ, Eilam Y, Szydel N, Gershon D. Age-related trend for osteopenia in femurs of female C57BL/6 mice. Compr Gerontol A. 1987;1:45–51.

    CAS  PubMed  Google Scholar 

  53. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33(3):387–98.

    Article  PubMed  Google Scholar 

  54. Jilka RL, O'Brien CA, Roberson PK, Bonewald LF, Weinstein RS, Manolagas SC. Dysapoptosis of osteoblasts and osteocytes increases cancellous bone formation but exaggerates bone porosity with age. J Bone Miner Res. 2014;29:103–17. Uses a genetic approach to show that prolongation of osteocyte lifespan exaggerates age-dependent development of cortical porosity in mice.

    Article  CAS  PubMed  Google Scholar 

  55. Schneider P, Krucker T, Meyer E, Ulmann-Schuler A, Weber B, Stampanoni M, et al. Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro-computed tomography and vascular replica. Microsc Res Tech. 2009;72(9):690–701.

    Article  PubMed  Google Scholar 

  56. Nelson JF, Felicio LS, Osterburg HH, Finch CE. Differential contributions of ovarian and extraovarian factors to age-related reductions in plasma estradiol and progesterone during the estrous cycle of C57BL/6J mice. Endocrinology. 1992;130:805–10.

    CAS  PubMed  Google Scholar 

  57. Mobbs CV, Cheyney D, Sinha YN, Finch CE. Age-correlated and ovary-dependent changes in relationships between plasma estradiol and luteinizing homrone, prolactin, and growth hormone in female C57BL/6J mice. Endocrinology. 1985;116:813–20.

    Article  CAS  PubMed  Google Scholar 

  58. Finch CE, Jonec V, Wisner Jr JR, Sinha YN, de Vellis JS, Swerdloff RS. Hormone production by the pituitary and testes of male C57BL/6J mice during aging. Endocrinology. 1977;101(4):1310–7.

    Article  CAS  PubMed  Google Scholar 

  59. Mullender MG, van der Meer DD, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone. 1996;18(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  60. Mori S, Harruff R, Ambrosius W, Burr DB. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone. 1997;21(6):521–6.

    Article  CAS  PubMed  Google Scholar 

  61. Qiu S, Rao DS, Palnitkar S, Parfitt AM. Age and distance from the surface but not menopause reduce osteocyte density in human cancellous bone. Bone. 2002;31(2):313–8.

    Article  CAS  PubMed  Google Scholar 

  62. Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75.

    Article  CAS  PubMed  Google Scholar 

  63. Torres-Lagares D, Tulasne JF, Pouget C, Llorens A, Saffar JL, Lesclous P. Structure and remodelling of the human parietal bone: an age and gender histomorphometric study. J Craniomaxillofac Surg. 2010;38(5):325–30.

    Article  PubMed  Google Scholar 

  64. Joiner DM, Tayim RJ, McElderry JD, Morris MD, Goldstein SA. Aged male rats regenerate cortical bone with reduced osteocyte density and reduced secretion of nitric oxide after mechanical stimulation. Calcif Tissue Int. 2014;94(5):484–94.

    Article  CAS  PubMed  Google Scholar 

  65. Frost HM. Micropetrosis. J Bone Joint Surg Am. 1960;42-A:144–50.

    CAS  PubMed  Google Scholar 

  66. Carter Y, Thomas CD, Clement JG, Cooper DM. Femoral osteocyte lacunar density, volume and morphology in women across the lifespan. J Struct Biol. 2013;183(3):519–26. Shows decrease in osteocyte lacunar volume in elderly humans using 3-dimensional measurements.

    Article  PubMed  Google Scholar 

  67. Kobayashi K, Nojiri H, Saita Y, Morikawa D, Ozawa Y, Watanabe K, et al. Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis. Sci Rep. 2015;16(5):9148. Shows that oxidative stress increases in osteocytes of aged mice.

    Article  CAS  Google Scholar 

  68. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Puschel K, Djuric M, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7(9):7542–51. Shows reduced osteocyte connectivity in cortical bone of aged humans.

    Article  CAS  PubMed  Google Scholar 

  69. Lopez-Otin C, Serrano M, Partridge L, Blasco MA, Kroemer G. The Hallmarks of aging. Cell. 2013;153(6). Authoritative review of current concepts of molecular causes of age-related changes in cell function and behavior.

  70. Tonna EA. Accumulation of lipofuscin (age pigment) in aging skeletal connective tissues as revealed by electron microscopy. J Gerontol. 1975;30(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  71. Brunk UT, Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med. 2002;33(5):611–9.

    Article  CAS  PubMed  Google Scholar 

  72. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Komatsu M, Wang QJ, Holstein GR, Friedrich Jr VL, Iwata J, Kominami E, et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A. 2007;104(36):14489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang CF, Gruber F, Ni C, Mildner M, Koenig U, Karner S, et al. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes. J Invest Dermatol. 2015;135(5):1348–57.

    Article  CAS  PubMed  Google Scholar 

  76. Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJ, Puleston DJ, et al. Autophagy controls acquisition of aging features in macrophages. J Innate Immun. 2015;7(4):375–91.

    Article  CAS  PubMed  Google Scholar 

  77. Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol. 2009;182(7):4046–55.

    Article  CAS  PubMed  Google Scholar 

  78. Jung HS, Chung KW, Won KJ, Kim J, Komatsu M, Tanaka K, et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008;8(4):318–24.

    Article  CAS  PubMed  Google Scholar 

  79. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 2014;8(5):1509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 2011;208(3):455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature. 2013;494(7437):323–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Onal M, Piemontese M, Xiong J, Wang Y, Han L, Ye S, et al. Suppression of autophagy in osteocytes mimics skeletal aging. J Biol Chem. 2013;288(24):17432–40. Demonstrates importance of autophagy in osteocytes to murine skeletal homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 2011;30(23):4701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 2011;332(6032):966–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. 2013;28(11):2414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL. Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways. J Cell Biol. 2006;175(1):121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M, et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy. 2014;10(11):1965–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chen K, Yang YH, Jiang SD, Jiang LS. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochem Cell Biol. 2014;142(3):285–95. Shows that expression of genes required for autophagy decline in rat osteocytes.

    Article  CAS  PubMed  Google Scholar 

  89. Luo D, Ren H, Li T, Lian K, Lin D. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos Int. 2015;Sep 22.

  90. Wilkinson CW, Petrie EC, Murray SR, Colasurdo EA, Raskind MA, Peskind ER. Human glucocorticoid feedback inhibition is reduced in older individuals: evening study. J Clin Endocrinol Metab. 2001;86(2):545–50.

    CAS  PubMed  Google Scholar 

  91. Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin N Am. 2012;41(3):595–611.

    Article  Google Scholar 

  92. Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O'Brien CA, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010;9:147–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xia X, Kar R, Gluhak-Heinrich J, Yao W, Lane NE, Bonewald LF, et al. Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res. 2010;25(11):2479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Piemontese M, Onal M, Xiong J, Wang Y, Almeida M, Thostenson JD, et al. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone. Bone. 2015;75:18–26.

    Article  CAS  PubMed  Google Scholar 

  95. Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19(1):107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.

    Article  CAS  PubMed  Google Scholar 

  99. Noble BS, Stevens H, Loveridge N, Reeve J. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997;20(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  100. Jilka RL, Noble B, Weinstein RS. Osteocyte apoptosis. Bone. 2013;54:264–71.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21(6):369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal. 2010;3(110):ra13.

    PubMed  PubMed Central  Google Scholar 

  103. Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, et al. HMGB1 is a bone-active cytokine. J Cell Physiol. 2008;214(3):730–9.

    Article  CAS  PubMed  Google Scholar 

  104. Bidwell JP, Yang J, Robling AG. Is HMGB1 an osteocyte alarmin? J Cell Biochem. 2008;103(6):1671–80.

    Article  CAS  PubMed  Google Scholar 

  105. Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC. Glucocorticoids and tumor necrosis factor {alpha} increase oxidative stress and suppress Wnt protein signaling in osteoblasts. J Biol Chem. 2011;286(52):44326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284(4):C934–43.

    Article  CAS  PubMed  Google Scholar 

  107. Hamrick MW, Ding KH, Pennington C, Chao YJ, Wu YD, Howard B, et al. Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone. 2006;39(4):845–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert L. Jilka or Charles A. O’Brien.

Ethics declarations

Conflict of Interest

Robert L. Jilka and Charles A. O’Brien declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Osteocytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jilka, R.L., O’Brien, C.A. The Role of Osteocytes in Age-Related Bone Loss. Curr Osteoporos Rep 14, 16–25 (2016). https://doi.org/10.1007/s11914-016-0297-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0297-0

Keywords

Navigation